President’s Message

The topic of our November meeting was “Pressure Reducing Valves in High-Rise Buildings” which was extremely informative. My thanks to Joe Janiga for conducting this presentation to the membership.

Also, I am delighted to mention that our Chapter’s very own John Cholin received the Hat’s Off award at the 2007 SFPE Professional Development Conference and Expo. held in October. Below is the statement that was written in the Awards Program:

John M. Cholin, P.E., FSFPE is recognized for his work to revise and update the SFPE fire alarm course, including the expansion of the course.

Way to go John!

According to the NFPA Journal November/December 2007, In 2006, fire departments in the United States responded to an estimated 1,642,500 fires, which an estimated loss of $11.3 billion. Many of these fires were small, with little or no property damage reported; however, 45 resulted in losses of $5 million or more each. Collectively, these large-loss fires resulted in $551 million in direct property loss, and were responsible for the deaths of six fire fighters and 11 civilians, as well as injuries to 35 fire fighters and 13 civilians. Despite the fact that these fires accounted for just .003 percent of the total fires estimated to have occurred in 2006, they accounted for 4.9 percent of the total estimated dollar loss.

The complete report, which contains very interesting statistics, is available at: http://www.nfpa.org/publicJournalDetail.asp?categoryID=1518&itemID=36784&src=NFPAJournal

I look forward to seeing everyone at our next meeting on January 7, 2008.

David Gluckman
NJSFPE Chapter President
The December meeting was held at the Hanover Manor, our normal venue, Chapter President Dave Gluckman presided. The minutes of the November meeting and the Treasurers report were read and accepted by the membership. Two new applications for membership were presented. Steve Oliver of Oliver Sprinkler Co., Inc. and Anthony Sharo of Cintas Fire Protection applied as Chapter Supporters. Both were voted on and accepted by the membership. Chapter past President Joe Janiga, Chief Engineering Technical Specialist, FM Global, Parsippany, NJ, was our guest speaker for the evening. Joe presented the latest technical information on testing of pressure reducing valves for automatic sprinkler systems in high rise buildings and demonstrated through a slide presentation flow measuring equipment that could be used in the on-site location environment. Membership contributions also added to the discussions which overall was very informative and of great interest to the audience.

CAREER OPPORTUNITIES...

Marsh NJ is Looking for Property Risk Control Consultant to Work Out of Their Morristown, NJ Office

**Technical Expertise**
5-10 years of relevant experience. Bachelor’s degree in engineering (fire protection or related) or equivalent. Background in fire protection/loss prevention or fire safety in industrial occupancies. Previous industry or insurance carrier experience preferred.

**Client Service**
- Analyzes client needs or project outline and recommends suitable approaches or options to consider.
- Uses facilitative and diagnostic skills to assist clients in the articulation of unusual problems.
- Probes beneath surface issues for concerns or issues that may be unclear to the client.
- Converts or translates project requirements into a work plan within a practice or technical area.
- Selectively matches products and services in own specialty to client’s key needs.
- Uses systems to organize and track information.
- Produces creative and effective materials that reflect an understanding of client, project and technical issues.
- Performs tasks on client implementation and measure results.
- Respect and maintain client confidentiality.
- Project Management:
  - Follows the continuous risk improvement methodology.
  - Suggests and applies objective criteria for measuring important processes.
  - Identify and suggest new ways of applying processes and technologies.
  - Manage and on occasion develop profitable project budgets, and assist with negotiating changes.
  - Participates in the development of pricing of projects and securing appropriate selection of resources.
  - Participates in the development and securing of client service agreements.
- Communicates
  - Develops and delivers effective written and oral communications, such as proposals, technical concepts and deliverables.

**Communications**

**Additional Responsibilities**
Seeks opportunities to develop new skills and broaden and deepen knowledge for yourself and colleagues. Supports and facilitates a team environment of continuous feedback and idea sharing. Participates in external associations to contribute skills and enhance technical abilities.

**Team Work**
Participates in team planning and implementation activities and openly shares information and own expertise to accomplish group goals.

Travel required (domestic and international travel possible)

Anyone interested in the position should contact:

Joseph M. Piontkowski
Senior Vice President
Northeast Zone PRC Leader
Marsh Risk Consulting
Marsh USA, Inc.
300 South State Street
Syracuse, NY 13202
(315) 425-3936 Phone
(315) 425-3932 Fax
### About our Company:

**Willis** is one of the world’s largest insurance brokers in the world, with over 16,000 people in 300 offices in 100 countries. We specialize in insurance broking and risk management services. Established in 1832, we are one of the oldest and most respected firms in the industry.

**Willis** is a people business. Those who join the **Willis Group** experience all the benefits available from a market leader in a dynamic industry including career diversity, job satisfaction, excellent training and resources.

We believe in motivating our employees to do the best. This requires a stimulating and challenging work environment and the financial rewards they merit. Our ability to perform at an exceptional level relies on recruiting exceptional people. To meet such demanding levels of excellence, we seek individuals who possess the following characteristics:

- innovative thinking
- highest degree of integrity
- knowledge sharing philosophy
- value collaboration and teamwork
- pursue continuous learning and personal development
- enjoy a culture of entrepreneurialism and performance achievement take pride in the organization.

### Position description:

We are seeking a dynamic fire protection professional to join our National Property Risk Control Practice. The consultant will manage consulting services for a portfolio of industrial, retail and health care clients. Key consulting responsibilities will include:

- developing risk control strategies with executives and risk managers
- completing risk assessments and property risk engineering evaluations
- presenting insightful seminars and workshops
- advising clients how to successfully apply loss prevention best practices
- facilitating communication and solutions between clients and insurers
- developing fire protection solutions using NFPA and FM standards
- assisting clients with developing and implementing global, national and local property protection programs
- assisting in new business production efforts
- maintaining and enhancing client relationships.

The consultant will also serve as a technical resource in our national practice and collaborate with other consultants in this practice. Limited overnight travel is required.

We are a growth company that values and rewards innovation, entrepreneurship, and teamwork.

### Location:

The consultant can be based in either our NYC office located at 1 World Financial Center, or our NJ office located at 25B Vreeland Rd. in Florham Park, NJ. depending on the candidate’s preference.

### Qualifications:

We welcome candidates with broker, insurer, or private sector experience. Candidates need to demonstrate a successful track record of results in their discipline. The following qualifications apply:

- BS Engineering or related field with HPR training/experience
- 3 - 7 years minimum experience in HPR engineering with carrier/broker/industry
- P.E. (Professional Engineering) License in Fire Protection Engineering preferred
- EIT with plans for obtaining a P.E. is OK
- CFPS (Certified Fire Protection Specialist) is a suitable alternative minimum credential in lieu of a P.E., or willingness to obtain.
- Excellent communication skills
- Excellent technical report writing skills
- Computer proficiency
- Any experience with business continuity planning or industrial safety would be a plus.

### Compensation:

We offer excellent salary and benefit packages commensurate with experience and qualifications.

### Contact information:

For additional confidential information, please contact:

**Joe.Stavish@willis.com**, or 973-410-4638

Confidential resumes may be forwarded to:

**Joe Stavish, P.E.**
**N.A. Property Risk Control Practice Leader**
**Willis of New Jersey**
**25B Vreeland Road**
**Florham Park, NJ 07932**
Dilution Effects

Since duct smoke detectors employ the same sensor as that usually installed on the ceiling for area protection, in an enclosure equipped with sampling tubes extending into the duct, there has often been the concern that the smoke concentration in the HVAC ducts would be too low to produce reliable detection in response to the fires they are generally expected to detect. As mentioned above, duct smoke detectors are used primarily to shutdown mechanical ventilation systems to prevent the transport of smoke throughout the building. Currently, there is no consensus regarding how large a fire necessitates this response. Is HVAC shutdown desirable before the fire has achieved 250 kW? 500 kW? 1.0 MW?

This issue is complicated by the fact that we do not have a sound performance metric for smoke detectors. The “sensitivity” marked on the detector in compliance with the requirement of the National Fire Alarm Code is valid only in the U.L. 268 Smoke Box Test. Consequently, before one can determine how much dilution has occurred, and whether it is material at some given fire size, one must have a valid measure of the smoke detector sensitivity.

The second presumption was that the dilution of the smoke produced by a fire is so severe that duct smoke detection is only effective in responding to fires that would be characterized as a “major involvement”. Many considered this a minor issue. Generally, duct smoke detectors are employed only to shutdown mechanical ventilation system to help limit the migration of smoke from the compartment of fire origin to other compartments via the HVAC system. They are not to be used as a substitute for area detection. However, no method for quantifying the smoke concentration as a function of HVAC system operating and compartment geometry parameters can be found in the prior research to enable one to quantify the dilution factor. In view of the fact that the UL 268A test standard allows listing of a detector that provides response to black smoke at 10.0 %/ft., there was a genuine concern that detectors operating at this current UL (and corresponding ULC) listing criterion might not sense smoke sufficiently well to serve the intended function.

A prerequisite for quantifying the effects of dilution is a valid measure of detector performance. While other sciences have long ago embraced a measurement of aerosols in terms of mass per unit volume or mass per unit air mass, the fire protection community has persisted in its effort to use a metric that more closely describes the effect the smoke will have on human egress, using percent per unit distance obscuration. Since only a fraction of the total effluent from a fire might be visible at any point in time and the magnitude of this fraction varies with the combustible, combustion conditions, smoke temperature, and smoke age, the use of an optical metric has failed to provide a performance metric that can consistently predict smoke detector performance.

The dilution issue can be reduced to a relatively simple relation, shown in Figure 10.

\[ D(t) = \left( \frac{D_m}{\chi_a \Delta H_c} \right) \left( \frac{Q_f}{V_{exh}} \right) \]

Figure 10: The Relation to Quantify Dilution

The smoke density in the HVAC duct at any point in time, \( D(t) \), is equal to the mass optical density of the smoke, a property of the fuel and combustion mode, over the product of the combustion efficiency, \( \chi_a \), and the net heat of combustion, \( \Delta H_c \), multiplied by the heat release rate of the fire, \( Q_f \), divided by the volumetric exhaust rate, \( V_{exh} \).

This relation essentially describes the smoke density as the product of a “material smoke parameter” derived from the mass optical density, combustion efficiency, and net heat of combustion, and a “dilution” parameter derived from the heat release rate and volumetric exhaust rate. In principal this relation can provide a measure of the dilution if the material smoke parameter is known.

To develop a measure of the “material smoke parameter” the UMDFPE team used the medium scale cone calorimeter to develop a means for quantifying the material smoke parameter. A duct was attached to the output stack of the calorimeter that was equipped with the traditional polychromatic light beam, thermocouple tree, calorimetry measurements, (gas analyzers thermocouples and orifice plate with pressure sensors), and a new smoke characterization tool – the laser sheet apparatus. The experimental set-up is shown in Figure 11.
The aging of smoke is a product of the process of agglomeration and coagulation. As smoke particles collide, they stick together, forming larger particles, while reducing the total number of particles per unit air volume. The UMDFPE team studied this process using the duct on the medium-scale cone calorimeter and the laser sheet apparatus. This apparatus uses a laser to illuminate all of the particles in a plane intersecting the duct, as shown in Figure 13.

Figure 13: Concept of the Laser Sheet Instrument

A CCD camera was used to view the laser light and convert individual particles into illuminated pixels. Small particles were counted as single pixels whereas larger, agglomerated particles illuminated more than one pixel. This gave the researchers the ability to determine the relative populations of large and small particles in real time. The laser sheet apparatus was placed at the duct inlet, as well as 3 meters (8.6 feet) downstream. Figure 14 shows the particle distribution of small particles.

Figure 14: 1-Pixel Counts Indicating “Small” Particle Populations in Smoke

When one compares Figure 14 and 15, it can be seen that the number of small particles at the duct inlet, compared to 3 meters downstream, decreased by a factor of 10 while the number of large particles increased by a factor of 2. This suggests that the aging of smoke occurs more rapidly than might have been expected.

NRC used the full-scale fire test facility to investigate the effects of smoke aging on detector performance. The analog response of the smoke detectors at Measuring Station 1 and Measuring Stations 2 varied very little in these tests despite the fact that the smoke had traveled the entire height of the 10-story building. (See Figure 12) This is consistent with the findings of UMDFPE; that agglomeration occurs quite quickly, and the smoke attains an apparently stable state. The detector analog outputs tracked the optical density of the smoke at the two measuring stations, as fire size and ventilation rate were varied.

NRC did run two experiments, one using polyurethane foam fuel, and the other using mixed clothing fuel, for an extended period of time of 2,000 seconds (33.3 minutes). During this time the smoke was recirculated through the building HVAC system. Both fuels gave similar results until approximately 700 seconds into the test. At that point the smoke density for the clothing fire began to decrease, while that for the polyurethane fuel did not. This could be due to subtle differences in smoke chemistry, but this effect did not occur until long after duct smoke detector response would have been expected. In general, the aging of smoke did not make an appreciable impact on duct smoke detector performance. 200 kW fires were detected even after the smoke had cooled and aged, while traveling from the first to the tenth story in the test facility.

Effects of Filters

Since smoke consists of solid particles, liquid droplets, gases, and agglomerates of these three classes of matter, one would expect the filters in a mechanical ventilating system to remove a portion of this material from the air. This effect varies depending upon the type of filter that is in place in the HVAC system.

Filters operate by one of the following modes of operation: straining, direct interception, inertial deposition, diffusion, or electrostatic separation. The performance of filters for mechanical ventilation systems is quantified through testing in accordance with ANSI/ASHRAE 52.1(1952) or ANSI/ASHRAE 52.2(1999). One measure of filter performance used is “weight arrestance,” the percentage, by weight, of dust captured by the filter under test. This measure skews results toward large, heavy particles. The measure that is most appropriate for smoke is the “dust spot efficiency”. The ASHRAE standards group filters on the basis of the range of dust spot efficiency they achieve in standard tests. Table 1 summarizes the grouping by dust spot efficiency and construction, and Figure 16 compares filter capabilities to typical particulates.
Studies of smoke particles have shown that they usually have a size within the range of 0.4 to 3.0 microns, depending upon the fuel and the mode of combustion (flaming versus smoldering). This is summarized in Table 2.

<table>
<thead>
<tr>
<th>Fuel Description</th>
<th>Particle size (microns, m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Fir Pyrolysis</td>
<td>0.5 - 0.9</td>
</tr>
<tr>
<td>Douglas Fir Flaming</td>
<td>0.43</td>
</tr>
<tr>
<td>Polyvinylchloride Pyrolysis</td>
<td>0.9 - 1.4</td>
</tr>
<tr>
<td>Polyvinylchloride Flaming</td>
<td>0.4</td>
</tr>
<tr>
<td>Polyurethane (flexible) Pyrolysis</td>
<td>0.8 - 1.8</td>
</tr>
<tr>
<td>Polyurethane (rigid) Pyrolysis</td>
<td>0.3 - 1.2</td>
</tr>
<tr>
<td>Polyurethane (rigid) Flaming</td>
<td>0.5</td>
</tr>
<tr>
<td>Cellulosic Insulation Smoldering</td>
<td>2.0 - 3.0</td>
</tr>
</tbody>
</table>

The testing in the NRC full-scale test facility showed that the HVAC filters did exert an important effect on duct smoke detector performance. The first test involved a filter of the Group 1 category, constructed of glass fibers in a cardboard frame, using the viscous impingement mode of filtration. It had a dust spot efficiency of 10 to 15%. This filter reduced the analog output of the ionization detectors an average of 20% while it reduced the analog output of the photoelectric detectors by 35%.

The second test was performed with a Group 2 filter, constructed of extended area, pleated wet-laid cellulose fiber (beaverage board), using dry filtration mode. This filter had a dust spot efficiency rating of 30 to 35% and created a high pressure drop in the system. This filter reduced the analog output of the ionization detector by 40% and that of the photoelectric detector by 55%.

Clearly, the filters were capable of removing smoke from the air in the mechanical ventilating system. Where the HVAC system air passes through a filter the analog output signal of produced by the detector is commensurately lower. The location of filters must be considered when locating duct smoke detectors. In general, the effect of filters is more pronounced on the performance of photoelectric type detectors than other technologies.

**Stratification in Ducts**

The National Fire Alarm Code, NFPA 72, has recommended a separation between a change in dimension or change in direction of a duct and a duct smoke detector of between 6 and 10 duct diameters. The objective of this recommendation has been to ensure that the distribution of smoke in the airflow was uniform. Unfortunately, while only a recommendation in the Appendix (now Annex) of the document, many authorities having jurisdiction (AHJs) enforce this criterion as if it were a requirement instead of a recommendation.

The UMDFPE team used the medium scale test duct and cone calorimeter to investigate whether there are limitations on the location of sampling tubes. Refer to Figure 11. The thermocouple rack was used to map the thermal stratification in the duct as a function of fire size and flow velocity. The laser sheet images were used to plot smoke distribution. The data showed that when the velocity is low the buoyancy of the smoke relative to air from elsewhere in the facility causes the smoke to occupy the upper portion of the duct. As the velocity increases, the distribution becomes more uniform. This is shown in Figure 17 where smoke density as determined by pixel counts and temperature are plotted for flows of 0.36 m³/sec and 1.42 m³/sec.
AUTOMATIC FIRE DETECTION AND FIRE ALARM SYSTEMS
SPONSORED BY:

AFAANJ

THE AUTOMATIC FIRE ALARM ASSOCIATION OF NEW JERSEY
February 21, 2008
Holiday Inn
1000 Roosevelt Avenue
Carteret, NJ (Off Exit 12 NJ Turnpike)
Go to www.AFAANJ.org for directions and a map

This course describes fire alarm systems and components and the proper way to apply them to meet the requirements of NFPA 72 National Fire Alarm Code, 2002 edition and NFPA 70, National Electrical Code, 2002 edition. As you know the above referenced codes are being enforced here in New Jersey.

This basic fire alarm seminar is an application course beneficial for new installers, sales personnel, service technicians, & building & fire inspectors involved in acceptance testing and/or plans review, or is useful as a refresher for anyone involved with fire alarms.

Course Materials -
1. Student workbook and handouts (provided)
2. Calculator, pencils and note paper (Student to provide)

Basic Fundamentals
Control panels, power supplies, initiating device, notification appliance and signaling line circuits; fire safety control functions; addressable, analog and multiplex systems; emergency voice/alarm communication systems, survivability, and two-way emergency communications systems. Includes information on battery and voltage drop calculations.

Notification Appliances
Types of notification appliances (horns, speakers, strobes, annunciators, etc.) and their proper application. Discuss the nature of sound. ADA and ANSI/NFPA requirements for visible notification appliances. Demonstrate the use of a sound level meter.

Initiating Devices
Types of initiating devices (manual stations, heat and smoke detectors, beam detectors, radiant energy sensing fire detectors, sprinkler alarm and supervisory devices for wet, dry, pre-action and deluge systems), how they operate, and their proper application in accordance with the standards. Attendees will complete worksheets on heat and smoke detector spacing.

Fire Safety Control Functions
Control functions such as smoke door release, elevator recall, air handler fan shutdown, smoke control and management systems (smoke control systems in high rise buildings, covered malls and atriums). Duct detector applications and installation requirements, and monitoring of installation conductors for fire safety control functions.

WHAT DOES IT COST?

- AFAANJ, NJBFAA members and all government employees -
  - 1-2 attendees $175.00 each
  - 3+ attendees $150.00 each
- Non-members
  - 1-2 attendees $275.00 each
  - 3+ attendees $250.00 each

Registration fee includes a student workbook, coffee and lunch on day of the seminar. All those that attend this seminar are invited to stay for the General AFAANJ meeting that begins at 5:00 PM at no charge, a $25.00 value and more CPDs.

Ninety-eight to ninety-nine percent of previous attendees have indicated they "would recommend to others" and they "received fair value for the money spent and information received."
SEMINAR INFORMATION

WHEN: 8:00 am to 4:00 pm
Thursday - February 21, 2008
WHERE:

Holiday Inn
1000 Roosevelt Avenue
Carteret, NJ
732-541-9500

REGISTRATION FORM FOR AUTOMATIC FIRE DETECTION AND FIRE ALARM SEMINAR

Please type or print:

Organization ________________________________

Street Address ________________________________

City __________________________ State __________ Zip ________

Telephone ___________________________ Fax __________________

Credit Card No ___________________________ Exp. Date ________

Cardholder Name (please print) ________________________________

Attendee(s) ___________________________ e-mail address __________________

Name ___________________________ e-mail address __________________

Name ___________________________ e-mail address __________________

1-2 attendees from the same company - $175 each
2+ attendees from the same company - $150 each

NFPA, FAANJ, NJ & NY SFPE & NJBFAA members and government employees

1-2 attendees from the same company - $275 each
2+ attendees from the same company - $250 each

Non-members -

Don't delay! Registration is limited to 40.

REGISTRATION FEES MUST BE PAID IN FULL PRIOR TO SEMINAR.
NICET information can be downloaded from their website at www.nicet.org.

Cancellation and refund policy:

A full refund of the seminar registration fee may be obtained provided AFAANJ receives written notification at least 7 days prior to the start of the seminar. All other cancellations will be subject to a $100 cancellation fee. "No-shows" are ineligible for refunds. Special circumstances will be handled on a case by case basis. AFAANJ seminars are subject to cancellation due to low registrations. AFAANJ cannot be responsible for losses resulting from the cancellation of any seminar.

Download additional forms at www.AFAANJ.org

Register online at www.afaa.org through our secure server and pay by credit card!

Or

Register by mail and pay by check!

AFAANJ
c/o Meadowlands Electronics
P. O. Box 4285
195 Allwood Road
Clifton, NJ 07012
Fax: 973-472-3332
PROPERTY, SAFETY MANAGERS & ENGINEERS

Monday January 7, 2008 (9:00am – 4:00pm)
Registration & Continental Breakfast 8:00 to 9:00am
Lunch will be offered from 12:00 to 1:00pm

FIRE FACTS SEMINAR # 13
FIRE DETECTION &
FIRE ALARM SYSTEMS

Lead Instructor: Tom LaCorte, CFPS
Asst. Vice President, Chubb Group of Insurance Cos.

PROPERTY MANAGERS, SAFETY MANAGERS & ENGINEERS are invited to attend this FREE seminar sponsored by City Fire Equipment Company of East Hanover, Seton Hall University and the South Orange Fire Department.

LOCATION:
Seton Hall University
Jubilee Hall
400 South Orange Avenue
South Orange, NJ 07079
Visit Website for Directions:
www.shu.edu/visiting/directions_by_car.html

Simply fill out the requested information below and fax it to City Fire Equipment Company at 973-781-1099. Registration is only open to Fire Sub-Code Officials and Fire Officials & Fire Inspectors until December 7, 2007. After December 7th registration is open to all, subject available space.

Please fill out all requested information below to receive your Certificate of Completion.

Name: ____________________________________________
Company Name: ______________________________________
Company Address: ______________________________________
City/State/Zip: _______________________________________
Telephone#: ____________________ Certification #________
Fax #: ____________________ E-mail Address: ____________

You will receive confirmation by fax, if registration is received by December 31, 2007. For Information, contact Paul McGrath at City Fire Equipment Company, Telephone 973-560-1600, extension 204 or E-mail paul@cityfire.com.
Notice: P.E. Candidates

Do you intend to take the P.E. Exam in fire protection Engineering next year? The benefits of professional licensure are well worth it. If so keep in mind that the NJ Chapter of the SFPE has the capacity to provide a P.E. Exam review program. In past years we achieved a 90% pass rate.

Last year three people contacted the Chapter in June requesting that we provide our review program. The Chapter members who serve as the mentors were unable to develop the preparatory materials on such short notice. It takes a substantial commitment of time to develop the preparatory materials and all of the mentors are bys professionals in their own right. Consequently, the Chapter was unable to provide the program on such short notice for those candidates.

If you plan to take the P.E. exam in Fire Protection Engineering in 2008 and would like to participate in the NJ Chapter of the SFPE P.E. Exam Review Program please let us know no later than January 7, 2008. You should provide notice of your intent to participate in the review program by sending an email to John M. Cholin, P.E. at jmcholin@bellatlantic.net.
2007-2008 CHAPTER COMMITTEES

STANDING COMMITTEES

Program
Ed Armm, Chairman
Consulting - Nick Chergotis & Peter Rullo

Arrangements
Vicki Serafin, Chairperson

Membership
John Cholin, Chairman

Nominating
Glenn Dietz, Chairman
Chuck Gandy
Glenn Buser

Scholarship Fund
Chuck Gandy, Chairman
Ed Armm
Mike Machette
Rich Reitberger
Jim Tolos

Auditing
Joe Jangia, Chairman
John Warnel

Archivist
Rich Reitberger, Chairman
Nicole Davidowitch

Historian
Jim Tolos

Communications
Fusible Link—Brad Hart
Ana Crisostomo—Coordinator
Mailing/Automation/e-mail—Vicki Serafin, Chairperson

SPECIAL COMMITTEES

Bylaws
Jim Tolos, Chairman
Joe Jangia - Co-Chairman

Career Recruitment
Al Dopart, Chairman
Glenn Delz
Dave Gluckman

Golf Outing
Richard Reitberger, Chairman
Joe Jangia

Awards
Frank Savino, Chairman
Rich Reitberger

PE Examination
John Cholin, Chairman
Joe Jangia
Mike Newman
Chuck Gandy

Chapter Seminar/Field Trip
Richard Reitberger, Chairman
Dave Gluckman
Joe Jangia

Legislative
Rich Reitberger, Chairman
Vinnie Fichera
Jerry Boyle

Finance
Rich Reitberger - Chairman
John Cholin

The U.S. Fire Administration have compiled a sizeable library of tool box talks (they call them “Coffee Break Training” topics) on specific subjects. Most are one page training tools that are comprised of narrative detail and photos to better illustrate the subject at hand. Topics include:

Access to Water Supplies, Administration, Automatic Sprinklers, Building Construction, Fire alarms and detection, Fire Dynamics, Hazardous materials, Fire Pumps And 100’s more

These can be downloaded from their website for free at http://www.usfa.dhs.gov/nfa/coffee-break/
Our thanks to Tom Sabatie of Roche for bringing this to our attention.
MEETING NOTICE

Date: January 7, 2008
Place: Hanover Manor
       16 Eagle Rock Avenue
       East Hanover, NJ
Price: $26.00
Dinner: 5:00-6:00 (Cash bar for mixed drinks)
        Dinner at 6 PM
Speaker(s): Tom Kuhta and Dave Gluckman - Willis
Topic: WTC No. 7—How it was Rebuilt

Please note for this meeting:
All officers, directors and committee chairman are requested to attend a meeting at 4:00 p.m. at the Hanover Manor.

PLEASE COMPLETE AND RETURN WITH YOUR CHECK PAYABLE TO “SFPE NJ CHAPTER” TO:

Vicki Serafin
Affiliated FM
400 Interpace Parkway, Bldg C - 3rd Floor
Parsippany, NJ 07054-1196
vicki.serafin@affiliatedfm.com

OR PAY AT THE DOOR

NAME: ____________________________________________

COMPANY:__________________________ TELEPHONE:______________________