President’s Message...

Our October field trip to Victaulic was a great success. We observed new technology in operation and got a very interesting tour of their large manufacturing facility in PA. I would like to thank all Victaulic personnel for their hospitality and for taking the time to treat all of us like VIP’s. I especially want to thanks Stanley Funk for setting the tours up and for having us as his guests. Our November meeting fast approaches. Please mark your calendars and attend the next meeting. Good food, expert speakers and interaction with your peers awaits. Don’t let the opportunity slip by. See you all in November.

Rich Reitberger
Chapter President
On October 14 the Chapter held a field trip to Victaulic in Easton PA. We had about 20 attendees. No chapter business was conducted during this trip. Our hosts, Stanley Funk, Marco Harris and Mike Polidori made a three part presentation. There was a classroom discussion of Victaulic’s Vortex product, a factory tour of their Easton site where they manufacture fittings, valves and other equipment and a visit to their test site in Phillipsburg for a walk through and live, medium scale fire demonstrations of the Vortex system.

Vortex is a hybrid, total flooding, Special Hazards Extinguishing system using nitrogen and water mist. The hybrid technology uses an emitter to create a homogenous nitrogen water mix. Nitrogen leaves the emitter at about 750mph and creates a shock wave as it passes a foil, atomizing the surrounding water stream. The resultant sub micron (10 micron) water mist is one of the reasons the system is an effective extinguishant. The agents are discharged at approximately a 1:1 ratio in a high momentum, low flow delivery. Nitrogen is 25psi and water 5psi entering the emitter. Emitter flow is approximately 150scfm nitrogen (water can vary from .25gpm to 1.06 gpm per emitter depending on design concentration) and one emitter can cover 1500 to 2500 cf. Base design discharge time is typically 3 or 10 minutes depending on the hazard. There was further detailed discussion of system components and operation, much of this is on the the literature and CD Victaulic provided to each attendee.

At their Edison site we got a close up look at the system and witnessed several operations including extinguishment of a pan fire. We saw how fine the water mist actually is and how little if any moisture residue collects on surfaces. Interesting to note; their test room has several pieces of energized electronic equipment, including a desktop PC and a server, subject to every test they conduct, and which are still operating after numerous (assumed) tests.

The factory tour was an enjoyable look at a Victaulic’s forges and machine shop. Including discussion of their Just in Time manufacturing procedures and modern coatings technology.

There were many comments afterward about how much we learned and how worthwhile and enjoyable the day was. Sincere thanks to our hosts; Stanley and his colleagues at Victaulic.

SFPE NJ Chapter Field Trip to Victaulic

On October 15, the Chapter sponsored a field trip for its members to the Corporate and research offices of Victaulic. Those that attended learned in detail about Victaulic’s new “Vortex” fire suppression system (not a gas suppression, not a water suppression, not a water mist system but a hybrid) which offers many significant advantages over various types of gas suppression or water mist technology. A new technology that could be a game changer in the near future. We also toured one of their manufacturing plants and learned about their extensive quality control protocols on their products that play an important part on fire protections system components that they manufacture. Our fields of fire, property and business continuity protection is constantly changing. The chapter meetings and events offer an easy and enjoyable way to keep up with these changes so that we can be better at what we do. The following is but one testimonial from one member that attended the field trip:

Colleagues:

I fully agree with both Paul and Joe. The field trip was “OUTSTANDING”. The monthly meetings are also EXCELLENT. I am sure a lot of planning and effort goes into organizing this.

My sincere thanks to the NJSFPE Chapter officers. Thank You.

Thanks
Chandra C. Patel
Roche
340 Kingsland Street
Nutley, NJ 07110-1199
Manager, EH&S Safety Operations
Roche Toastmasters VP of Public Relations
Tel: 973-235-3520
Fax: 973-235-7710
Email: chandra_c.patel@roche.com
The U.S. fire death rate has gone down dramatically over the past three decades since the creation of the U.S. Fire Administration (USFA), from over 30 deaths per million population to 11 deaths per million population. The United States, however, continues to have one of the highest fire death rates per capita among Western Nations. The original goal for USFA was to help lead a reduction in fire deaths by 50 percent in a generation. With annual fire deaths dropping from over 9,000 to less than 3,500 in that period of time, USFA’s goal has been achieved. Nevertheless, fire deaths are still high.

Approximately 1,800 fatal residential building fires occurred annually in recent years (2006 to 2008). These fires resulted in an annual average of approximately 2,635 deaths, 725 injuries, and $196 million in property loss.

This report is one of a continuing series of topical reports issued by the USFA’s National Fire Data Center and addresses the characteristics of fatal residential building fires reported to the National Fire Incident Reporting System (NFIRS) from 2006 to 2008, the most recent data available at the time of the analysis. Because 79 percent of fire deaths occur in residential buildings, they are the focus of this report. The information in this report about fatal residential fires can be used not only to assess progress but also to understand the nature of the fatal fire problem and its implications for targeting of prevention programs.

For the purpose of this report, the terms “residential fires” and “fatal residential fires” are synonymous with “residential building fires” and “fatal residential building fires,” respectively. “Fatal residential fires” is used throughout the body of this report; the findings, tables, charts, headings, and footnotes reflect the full category, “fatal residential building fires.”

Loss Measures

Fatal residential fires do not account for many fires in the overall residential fire profile, but they have tremendous and devastating outcomes. Table 1 presents losses, averaged over the 3-year-period, for fatal and nonfatal residential fires. Fatal residential fires reported to NFIRS have 6 times the dollar loss per fire and 13 times the injury rate of nonfatal residential fires. These statistics reflect the destructive nature of the fires that result in fatalities.
Table 1. Loss Measures for Fatal and Nonfatal Residential Building Fires
(3-year average, 2006–2008)

<table>
<thead>
<tr>
<th>Measure</th>
<th>Fatal Residential Building Fires</th>
<th>Nonfatal Residential Building Fires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Loss:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatalities/1,000 fires</td>
<td>1,195.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Injuries/1,000 fires</td>
<td>344.2</td>
<td>26.7</td>
</tr>
<tr>
<td>Dollar loss/fire</td>
<td>$95,080</td>
<td>$15,710</td>
</tr>
</tbody>
</table>

Source: NFIRS 5.0.
Note: Average loss for fatalities and injuries is computed per 1,000 fires, average dollar loss is computed per fire and is rounded to the nearest $.10.

When Fatal Residential Building Fires Occur

As shown in Figure 1, fatal residential fires occur most frequently in the late evening and early morning hours, peaking from midnight to 5 a.m. One-third (33 percent) of fatal residential fires occur during these 5 hours. They then decline throughout the day, reaching the lowest point during the early afternoon hours. There are a few possible reasons for this. First, many people are sleeping and less on guard in the middle of the night. If smoke alarms are not present, these individuals may die before waking up to a fire. Second, and related, cigarette and other smoldering fires started by careless actions before people retire for the night may go unnoticed and grow to rapidly progressing fires while they are sleeping.

Figure 1. Fatal Residential Building Fires by Time of Alarm (2006–2008)

The time of alarm profile for fatal residential fires is in contrast to the alarm time profile for nonfatal residential fires as shown in Figure 2. Nonfatal residential fires have the reverse daily cycle, with fires, predominately cooking fires, occurring during the late afternoon and evening.
Fusible Link

Figure 2. Time of Alarm for Fatal and Nonfatal Residential Building Fires (2006–2008)

Fatal residential fires have much higher incidence in the cooler months—twice that of the summer months, perhaps as a result of increased activities indoors. Fatal residential fires peak in January at 13 percent (Figure 3). Fire incidence declines steadily after January, reaching the lowest incidence during the summer months.

Figure 3. Fatal Residential Building Fires by Month (2006–2008)

Causes of Fatal Residential Building Fires

The causes of fires are often a complex chain of events. To determine the cause of a fire, analysts rely on the data collected. Heat source, equipment involved, factors (human or otherwise) contributing to the ignition, incident type, and the cause of ignition are the primary data elements used. A large percentage of fatal residential fire incidents reported to NFIRS (43 percent) do not have sufficient information to
determine the cause of the fire. The cause analyses that follow reflect only the 57 percent of incidents where enough information and enough detail were reported to determine the cause of the fatal fire.³

Nineteen percent of all fatal residential fires are smoking-related⁴ as shown in Figure 4. Although not as prominent as it once was, smoking (with rare exceptions) has been the leading cause of fatal residential fires since NFIRS’s inception. Fires caused by electrical malfunctions (11 percent) and intentionally set fires (10 percent) are the next leading specific causes.

Multiple fatality fires, those fires resulting in two or more deaths, in residential buildings were most often caused by electrical malfunctions (16 percent) followed by intentionally set fires (14 percent). In contrast, smoking is the leading cause of single fatality fires (20 percent).

 Fires caused by other unintentional or careless actions play a larger role in fatal residential fires (15 percent) than in nonfatal residential fires (6 percent).

Figure 4. Causes of Fatal Residential Building Fires (2006–2008)

Source: NFIRS S.O.

Note: Causes are listed in order of the NFIRS Cause Hierarchy for ease of comparison of fire causes across different aspects of the fire problem. Fires are assigned to 1 of 18 cause groupings using a hierarchy of definitions, approximately as shown in the chart above. A fire is included in the highest category into which it fits. If it does not fit the top category, then the second one is considered, and then that one, and so on. For example, if the fire is judged to be intentionally set and a match was used to ignite it, it is classified as intentional and not open flame because intentional is higher in the hierarchy.
Winter and Summer Fatal Residential Fire Causes

As shown in Figure 3, fatal residential fires have much higher incidence in the cooler months. While the addition of heating helps account for the increase in overall residential fires in the cooler winter months, heating is not a primary cause of these winter fatal residential fires. Nearly half of all fatal residential fires in December through March are the result of three causes: smoking (20 percent); other unintentional or careless actions (17 percent); or electrical malfunctions (12 percent). Heating, the fourth leading cause, is the cause of 9 percent of these fatal winter fires (Table 2).

Half as many fatal fires occur in the warmer months, June through September (also Figure 3). As shown in Table 2, with the exception of intentionally caused fires, the causes of these summer fires are not remarkably different from fatal winter fires. Three of the four leading causes remain the same: smoking (18 percent); electrical malfunctions (12 percent); and other unintentional or careless actions (11 percent). The increase in fatal fires in the winter months is more likely to be related to the increase in indoor activities, as noted earlier, rather than the type of fire.

<table>
<thead>
<tr>
<th>Leading Cause of Fire</th>
<th>Percent (Unknowns Apportioned)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>December–March</td>
</tr>
<tr>
<td>Smoking</td>
<td>19.5</td>
</tr>
<tr>
<td>Intentional</td>
<td></td>
</tr>
<tr>
<td>Other Unintentional, Careless</td>
<td>17.1</td>
</tr>
<tr>
<td>Electrical Malfunction</td>
<td>11.5</td>
</tr>
<tr>
<td>Heating</td>
<td>8.5</td>
</tr>
</tbody>
</table>

Source: NFIRS S.O.

Fire Spread in Fatal Residential Building Fires

Seventy-six percent of fatal residential fires extend beyond the room of origin. These fires often occur in the middle of the night when residents are generally asleep and unaware of the fire. In addition, a quarter of fatal residential building fires are confined to the room or object of origin (Figure 5). Many people do not realize that a fire does not have to be large to be deadly.

Figure 5. Extent of Fire Spread in Fatal Residential Building Fires (2006–2008)

Source: NFIRS S.O.
Where Fatal Residential Building Fires Start

Table 3 shows the leading areas of fire origin in fatal residential building fires. These fires start most frequently in bedrooms (27 percent) and common rooms including dens, family rooms, living rooms, and lounges (23 percent). Fires starting in cooking areas or kitchens account for 15 percent of fires.

<table>
<thead>
<tr>
<th>Area of Origin</th>
<th>Percent (Unknowns Apportioned)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedrooms</td>
<td>27.4</td>
</tr>
<tr>
<td>Common room, den., family room, living room, lounge</td>
<td>22.5</td>
</tr>
<tr>
<td>Cooking area, kitchen</td>
<td>15.3</td>
</tr>
</tbody>
</table>

Source: NFIRS S.O.

Eighty percent of fatal residential fires occur in one- and two-family houses as seen in Table 4. This is not surprising since the majority of the population lives in these types of residences. Multifamily houses account for 16 percent of all fatal residential fires. Other residential occupancies, including boarding and rooming houses, and hotels and motels, are a very small portion, accounting for only 4 percent of fatal residential fires.

<table>
<thead>
<tr>
<th>Property Use</th>
<th>Percent (Unknowns Apportioned)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One- and two-family houses</td>
<td>80.2</td>
</tr>
<tr>
<td>Multifamily houses</td>
<td>16.1</td>
</tr>
<tr>
<td>Other residential buildings</td>
<td>2.8</td>
</tr>
<tr>
<td>Boarding, rooming houses</td>
<td>0.4</td>
</tr>
<tr>
<td>Hotels and motels</td>
<td>0.4</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Source: NFIRS S.O.

Factors Contributing to Ignition

Table 5 shows the categories of factors contributing to ignition for fatal residential fires. The “misuse of material or product” is the leading category contributing (59 percent) to the ignition of fatal residential fires. Factors in the “electrical failure or malfunction” category contribute to the ignition of the fire in 15 percent of fatal residential fires. The “other (unspecified) factors” and “operational deficiency” categories account for 13 percent and 12 percent, respectively, of fatal residential fires. These four categories play a role in nearly all fatal residential fires where a contributing factor is reported.

Placing a heat source too close to combustible objects, part of the “misuse of material or product” category, is the leading specific contributing factor (21 percent). Also a part of the “misuse of material or product” category, abandoned or discarded materials, primarily cigarettes, is the second leading specific contributing factor in 17 percent of fatal residential fires.

<table>
<thead>
<tr>
<th>Factor Contributing to Ignition Category</th>
<th>Percent of Fatal Residential Fires (Unknowns Apportioned)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misuse of material or product</td>
<td>59.3</td>
</tr>
<tr>
<td>Electrical failure, malfunction</td>
<td>15.1</td>
</tr>
<tr>
<td>Other factors contributing to ignition</td>
<td>13.2</td>
</tr>
<tr>
<td>Operational deficiency</td>
<td>12.0</td>
</tr>
<tr>
<td>Mechanical failure, malfunction</td>
<td>4.8</td>
</tr>
<tr>
<td>Fire spread or control</td>
<td>2.7</td>
</tr>
<tr>
<td>Design, manufacture, installation deficiency</td>
<td>1.4</td>
</tr>
<tr>
<td>Natural condition</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Source: NFIRS S.O.

Notes: 1) Includes only incidents where factors that contributed to the ignition of the fire were specified.

2) Multiple factors contributing to fire ignition may be noted for each incident; total will exceed 100 percent.

Human Factors Contributing to Ignition

Human factors—the human condition or situation that allowed the heat source and combustible material to combine to ignite the fire—play an important role in fatal residential fires. The leading human factor contributing to the ignition of the fire is being asleep. This finding is not unexpected as 48 percent of fatal fires occur during the 8-hour period, 10 p.m. to 6 a.m. (Figure 1). When being asleep was reported as a contributing factor to the fire, it was most often reported as a factor in smoking-related and other unintentional or careless caused fires.

Possibly impaired by alcohol or drugs is the second leading human factor contributing to the ignition of the fire (24 percent). When possible alcohol or drug impairment was reported as a factor, it was most often reported as a factor in smoking-related and intentionally set fires.
RENEWAL APPLICATION & 2010-2011 DUES NOTICE

Name: __
Title: __
Company: __
Business Address:
Fax: ___________________________ Phone: ____________________________
Home Address: ___
Phone: __
Email Address* : ___

* PLEASE PROVIDE US WITH YOUR E-MAIL ADDRESS EVEN IF WE HAVE IT ALREADY SO WE MAY UPDATE OUR RECORDS. THIS WILL ENABLE US TO PROVIDE YOU WITH IMPORTANT AND TIMELY NOTICES SUCH AS MEETING CANCELLATIONS DUE TO INCLEMENT WEATHER.

Hurricanes are not considered inclemency’s of the season here! Just normal circumstance that is not insured against in a normal homeowner’s policy.

1. Are you a current member of the International SFPE?
 If not, would you like a membership application?

2. Are you interested in NJ Chapter Committee Participation?

PLEAS REMIT BY - ASAP

MAKE YOUR CHECK PAYABLE TO - "NJ CHAPTER SFPE"

MAIL YOUR CHECK TODAY WITH THIS APPLICATION TO:

Vicki Lynn Serafin
C/O NJ Chapter SFPE
P.O. Box 8268
Parisppany, NJ 07054-1196

Dues - 2010-2011: $20.00 E-mail copies of Fusible Link
and Meeting Notices

Still need application
Filed out $ 0.00 Retired member

Email: vicki.serafin@affiliatedfm.com

Thank you for your continued support!
Meeting Dates/Programs 2010-2011

<table>
<thead>
<tr>
<th>Date</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov. 1</td>
<td>Antifreeze in Residential and Industrial Sprinkler Piping—Russ Flemming</td>
</tr>
<tr>
<td>Dec. 6</td>
<td>Kelly award recipient to be speaker.</td>
</tr>
<tr>
<td>Jan. 3</td>
<td>Career day speakers from Maryland, Oklahoma and Worcester</td>
</tr>
<tr>
<td>Feb. 7</td>
<td>Dust Update—John Cholin</td>
</tr>
<tr>
<td>March 7</td>
<td>Insurance Industry Update</td>
</tr>
<tr>
<td>April 22</td>
<td>Joint Symposium/Seminar—International Codes and Standards</td>
</tr>
<tr>
<td>May 2</td>
<td>Green Power Hazards, FM speaker.</td>
</tr>
<tr>
<td>June 13</td>
<td>Annual Meeting—The Changing View of Protection for Date Centers.</td>
</tr>
</tbody>
</table>

Associated Fire Protection

Roland Straten, P.E.

100 Jackson Street
Paterson, NJ 07501
(973) 864-7250 Ext. 150
Fax: (973) 884-4611
rstraten@alpfire.com

Associated Consulting Engineers, P.C.

Robert E. Murray, P.E.

214 Clarke Avenue, South Plainfield, New Jersey 07080
(908) 765-5081 Fax (908) 765-5087 Email amurray@afirepro.com

SLICER & ASSOCIATES

Fire Protection and Loss Prevention Consulting

J. Sargent “Sarge” Slicer

P.O. Box 1647
West Chatham, MA 02669-1647
Office 508-945-5074
West Chatham, MA 02669-1647
Mobile 973-493-0369
Office 508-945-5074
VM & Fax 866-395-6172
Member – SFPE & NFPA sargelslicer1@myibocs.com

JMCC

John M. Cholin P.E., FSFPE, M.E.E.

J.M. Cholin Consultants, Inc.
Fire Protection Engineering and Consulting Services
194 Roosevelt Drive, Oakland NJ 07436 USA
Telephone: 201-337-8621 • Fax: 201-337-5603
 jmcc@jmccholincorporated.com • www.jmcholinconsultants.com

GB Risk Consulting, LLC

Glenn D. Buser, P.E.

201-891-1405
201-450-7559 (Cell)

GB Risk Consulting, LLC
155 Moramarco Court
Mahwah, NJ 07430
Email: gbuser@gbrisk.com

Tyco

Fire & Security

ADT

ADT Security Services, Inc.
695 Route 48 West
Suite 200
Fairfield, NJ 07004

Tel: 973 399 6477
Fax: 901 327 0769
email: rolinski@adt.com
MEETING NOTICE

Date: November 1, 2010

Place: Hanover Manor
16 Eagle Rock Avenue
East Hanover, NJ

Price: $30.00

Dinner: 5:00-6:00 (Cash bar for mixed drinks)
Dinner at 6 PM

Topic: Antifreeze in Residential and Industrial Sprinkler Piping—Russ Flemming

Please note for this meeting:
All officers, directors and committee chairman are requested to attend a meeting at 4:00 p.m. at the Hanover Manor.

PLEASE COMPLETE AND RETURN WITH YOUR CHECK PAYABLE TO “SFPE NJ CHAPTER” TO:

Vicki Serafin
Affiliated FM
400 Interpace Parkway, Bldg C - 3rd Floor
Parsippany, NJ 07054-1196
Phone: (973) 541-6771
Fax: (973) 541-6909

OR PAY AT THE DOOR

NAME: __

COMPANY:_________________________ TELEPHONE:______________________
HELPFUL LINKS

ADAAG http://www.access-board.gov/adaag/about/index.htm
AFAA National http://www.affiliatedfm.com
AFSA http://www.firesprinkler.org/
ANSI http://web.ansi.org/
ASHRAE http://www.ashrae.org/
Campus-Firewatch http://www.campus-firewatch.com/
Coffee Break Training http://www.usfa.dhs.gov/nda/coffee-break/
CPSC http://www.cpsc.gov/
CSAA http://www.csaaul.org/
Municipal Codes (E Codes) http://www.generalcode.com/Webcode2.html
FM Global http://www.fmglobal.com/
FSDANY http://www.fsdany.org/regs.htm
FSI http://www.firesprinklerinitiative.org/
FSSA http://www.fssa.net/
Fire Tech Productions—Nicet Training (FTP) http://www.firetech.com/
Home Fire Sprklr Coalition http://www.homefiresprinkler.org/
AFAA-NJ http://www.afaanj.org/
National of Fire Equipment Distributors (NAFED) - http://www.nafed.org/index.cfm

ADVERTISE IN THE FUSIBLE LINK

Do you want your business to be known by over 125 professionals in the local Fire Protection industry? Advertise in the Fusible Link. $100 per chapter fiscal year. Contact Vicki Serafin for more info: Vicki.serafin@affiliatedfm.com