President’s Message...

I’m getting very excited about our 4th Annual Spring Symposium held jointly with the Automatic Fire Alarm Association of New Jersey. This year we are calling it “Enhancing Life Safety and Property Protection through Education” due to the variety of topics. We are securing education credit from the NJ Society of Professional Engineers as well as the NJ Chapter of the American Institute of Architects. As always NICET CEU’s will be available to all that indicate they need the certification when they both sign in and out.

As in past years we have everybody together in the morning for the trade show and two exciting presentations. Our first will concern the ANSI A17.1 Safety Code for Elevators and Escalators and apply it to NFPA 13 and 72. Bruce Fraser will present “Interfacing Fire Alarm, Sprinkler and Elevator Systems”. We will follow that up with a presentation on clean agent suppression systems. Our speaker will objectively review all of the agents available in today’s market and discuss the pros and cons of each of them.

We will have a continental breakfast and lunch with our vendors as well as a full hour dedicated only to allowing attendees to meet with and discuss the latest technologies available to us for alarm, detection, suppression as well as some software and test equipment. If you get your vendor card initialed by all of the vendors you will be eligible for a drawing to be held at 4:30 for a large flat screen TV.

As in the past the afternoon will take two directions. On the alarm and detection side John Drucker, CET AFAA’s 2011 Man of the Year who is the Fire Protection Subcode Official, Building, Fire, Electrical Inspector and Fire Investigator for the Borough of Red Bank who will present an update on New Jersey’s adopted versions of the International Code Family as well as our own Rehabilitation Subcode.

On the suppression side we have Ken Isman, P.E., FSFPE Vice President of Engineering for the National Fire Sprinkler Association (NFSA) who will discuss anti-freeze in automatic fire sprinkler systems. Also in the afternoon we have a presentation on Factory Mutual Global’s advice about protecting generator fuel systems which is now publically available as part of their Data Sheet 5223 ‘Emergency and Standby Power Systems’. Matt Daelhousen, of FM Global’s Engineering Standards Division, the author and our own Vice President Mr. Joe Janiga, P.E., FSFPE of FM Global’s local office will discuss parts of the document, outline various protection recommendations and explain the underlying reasoning for them.

We have a lot to be excited about this year and I am looking forward to a good turnout. Please remember to visit all of the vendors for a chance to win a flat screen TV. I thank those who supported our chapter by attended our February meeting. The discussion on foam agents went on well after the formal presentation was over with lots of first-rate questions and answers. I thank Jim Schwander, Territory Manager Foam Systems 2 East and Central Regions USA, Tyco Fire Protection Products for a very informative and interesting presentation.

Finally I ask that you all come out to our March meeting where Marty Ahrens, Fire Analysis and Research Division: National Fire Protection Association will speak to our membership about trends in fire loss statistics.

Yours in Life Safety,

Ed Armm, SET
President NJSFPE
President Ed Armm convened the meeting at 6:00 PM at the Hanover Manor, E. Hanover, NJ with a salute to the flag and the customary introductions. There were 27 attendees.

Brad Hart presented the minutes from the January 7, 2013 chapter meeting. The membership approved the minutes as published in the Fusible Link.

Glenn Buser presented the Treasurer’s Report of December, 2012. A motion to accept the report was made and approved. The chapter tax filing documentation was also available for review.

There was one new member – John Antola, Jr of FM Global - applying as a chapter supporter. His membership was approved by the chapter.

Ed Armm informed the membership about the planned presentations at the upcoming symposium.

Jim Schwander of Tyco Fire Protection Products gave a presentation on foam systems.

The meeting was adjourned at 7:55 PM.

University of New Haven’s Society of Fire Protection Engineers’ Student Chapter
3rd Annual Technical Seminar

Event dates:
March 27 and 28, 2013

Location:
University of New Haven (Bartels Hall Meeting Room A/B)
300 Boston Post Road
West Haven, CT 06516

Topics and Speakers:

Wednesday, March 27, 2013 (9 AM – 4 PM - Full Day Seminar)
Analysis and Interpretation of Post-Incident Damages for Determination of Fire Origin
Andrew Cox, Special Agent - Bureau of Alcohol, Tobacco, Fire Arms, and Explosives
Keith Rodenhiser, Fire Investigator - New Hampshire State Fire Marshall's Office

Thursday, March 28, 2013
Expert Witness Work on Reoccupying a Tornado Ravaged High Rise Building
Warren Bonisch, PE, CFEI – Vice President/Managing Director – Aon Fire Protection Engineering

The Interaction Between the Fire Protection Engineer and Attorney During a Fire Investigation
Joseph Carey, JD – Robinson & Cole, LLP
Christopher Wood, P.E., JD – Firelink

Topic to Be Determined
Andrew Ellison, P.E, CFEI – Senior Engineer – Exponent

Topic to Be Determined
Phil Crombie, P.E. – 2nd Vice President/Director Forensics Laboratory – Travelers Insurance Company

Topic to Be Determined
Steven Hill, P.E. – Senior Consultant – The RJA Group

Topic to Be Determined
Leonard Belliveau, P.E. – Office Manager/Senior Consultant – Hughes Associates

Cause and Origin – Perspectives from a Deputy Fire Marshal
Pete Willse, Director of Research at XL GAPS
About the Seminar

This is SFPE’s 3rd Annual UNH SFPE Student Chapter Technical Seminar here at the University. The purpose of the event is to raise awareness of the UNH Fire Protection Engineering program within the student body and within the profession, and to promote the discipline of fire protection engineering in general. This year’s seminar is based on the theme of fire and fire system related loss investigations, and we have assembled a uniquely qualified group of speakers to address this very interesting topic.

Check in on both days will begin at 8 AM, with programs commencing at 9 AM. A hot lunch will be provided both days. Check in for the Wednesday March 27 seminar is limited to the first 40 paid registrants, with priority given to speakers and program sponsors.

Single day registration (Professionals): $100.00
Two day registration (Professionals): $150.00
Student Registration: $20.00
UNH SFPE Student Registration: Free (must be registered prior to the event).

Name: ________________________________
Company: ____________________________
Phone: ______________________________
E-mail: ______________________________
Registration Type: ___ Two Day: ___Single Day (Wednesday): Single Day (Thursday): ___Student
Amount Enclosed: ______________________
Make Checks Payable to:
University of New Haven SFPE Student Chapter
Attention: Nelson Dunston
300 Boston Post Road
West Haven, CT 06516
JOB OPPORTUNITY

Arora Engineers, Inc. has two engineering position openings per the job descriptions below. If you have an interest please contact:

John P. Stoppi Jr., P.E. | Fire/Life Safety Department Head
Arora Engineers, Inc. | One Gateway Center, Suite 1020, Newark, NJ 07102
Tel 973.645.1880 ext. 1004 Fax 973.645.1882 Mobile 908.339.3501
Web www.aroraengineers.com

JOB DESCRIPTION
Working Title: Senior Fire Alarm Systems Designer

<table>
<thead>
<tr>
<th>SENIOR FIRE/LIFE SAFETY DESIGNER</th>
<th>Status:</th>
<th>Exempt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of needed supervision:</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Supervisor:</td>
<td></td>
<td>Fire/Life Safety Department Head</td>
</tr>
<tr>
<td>Level of independent judgment</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Department:</td>
<td></td>
<td>Planning and Design</td>
</tr>
</tbody>
</table>

Overall Responsibility: Considered technical expert and company leader for fire alarm systems and technologies. Incorporates fire alarm design into buildings, structures, and facilities while considering project requirements and interfacing system technical requirements.

Essential Functions:
1. In coordination with the Fire/Life Safety Department Head, fire protection engineers, and designers, meets to discuss the project scope, schedule, phasing, staging, specific site issues, and pertinent code issues.
2. Provides technically accurate, complete construction documents to the client that adheres to all code requirements, company specifications and the engineering standards of practice.
3. Provides conceptual, working, and detailed design of fire alarm systems for new and existing facilities.
4. Reviews, evaluates, analyzes technical reports, correspondence, and proposals.
5. Ensures code compliance.
6. Develops, proposes, and supports design solutions to design and engineering problems.
7. Performs site surveys, inspections, and generates punch lists.
8. Attends internal meetings as well as client meetings and participates in a tactful, effective way.
9. Provides technical guidance, explanations, and information to other design team members.

Secondary Functions:
1. Attends professional society meetings and reports on current developments.
2. Writes technical articles for publication in magazines, journals, or books.
3. Delivers internal and external training presentations, seminars.
4. Attends training as approved by Fire/Life Safety Department Head.

Needed Skills:
1. Broad knowledge of conceptual fire alarm design as it applies to a wide variety of occupancies, structures, and facilities.
2. Detailed fire alarm design knowledge as it applies to wiring methods, system interfaces, control limitations, and methods to achieve pathway survivability.
3. Must be intimately familiar with NFPA 72, including differences between versions, recent updates, and the intent of the code.
5. Familiar with model building codes and their fire alarm requirements.
7. Generally familiar with trade concepts, engineering methods, project delivery systems, and construction technologies.
8. Proficient in AutoCAD 2008 or higher.
10. Knowledge of MS Office Suite
11. Experience preparing, editing, and reviewing fire alarm design documents, specifications, and shop drawings
12. Familiar with passive building fire protection, including fire rated construction, firestopping, fire rated doors and windows.
13. Ability to understand the fire alarm equipment of multiple manufacturers and incorporate existing equipment into renovation or expansion project
14. Ability to interact with manufacturers or vendors to determine best design solutions.
15. Experience in commissioning, inspecting and troubleshooting fire alarm systems
16. Familiar with concepts of fire alarm system programming
17. Has experience in construction inspection, developing punch lists, or construction management
18. Has general knowledge of fire protection engineering, including suppression, hazard analysis, egress, code consulting, fire dynamics, smoke management, and egress systems.
19. Candidate should be able to orally communicate complex design and technical ideas to other designers and engineers as well as people with a nontechnical background.
20. Candidate must possess excellent writing skills, capable of writing reports, letters, and facilitating effective internal and external communication.
21. Candidate should be comfortable delivering technical presentations designed to convey advanced technical ideas.

Education/Experience Minimum: Associates Degree in Engineering Technology, 10 years directly related to fire alarm and detection

Required Certifications: NICET III in Fire Alarm Systems with ability to obtain NICET IV in Fire Alarm Systems in 6 months; registered, licensed, or certified in fire alarm related technologies by a state or local authority with ability to obtain NICET IV in Fire Alarm Systems in 6 months; factory trained and certified for fire alarm system design and emergency communications system design of a specific type and brand of system or in multiple types and brands with ability to obtain NICET IV in Fire Alarm Systems in 6 months.

Preferred Certifications: NICET Level IV certification in Fire Alarm Systems; Certified Fire Protection Specialist (CFPS); NICET Certification in Automatic Sprinkler Systems, Special Hazard Suppression Systems, or Inspection, Testing and Maintenance of Water-Based Systems.

Professional Development: Candidate should be active in fire protection engineering, fire alarm, trade, or other technical societies as it relates to the fire alarm field. Membership in any code or standard technical committees is also desirable. Candidate should be engaged in lifelong learning as it relates to the profession in an effort to stay current with all the technical advances, development, and changes.

Company Description
ARORA ENGINEERS, INC. (ARORA) - MBE For more than 20 years, Arora’s solid mix of industry knowledge and expertise allows the firm to offer a broad spectrum of engineering services, including oversight, project management, and design of new and existing mechanical, electrical, plumbing, electrical aeronautical, fire protection, and IT building and airfield systems. Arora also provides construction management and facilities maintenance management. Arora’s multidisciplinary approach offers clients comprehensive, cost-effective solutions to their most challenging situations. The firm’s technical staff has both the understanding of and experience in engineering and integration to enable the successful programming, design, and implementation of specialized building systems. From the initial design process, bid services, and cost estimation to construction and ongoing facility maintenance and management, Arora’s team of professionals is equipped to address any problem, and most importantly, to find the right solution. Arora understands the critical nature of responsiveness and quality control. By coupling highly educated and experienced engineers with leading-edge engineering practices and technologies, Arora’s efforts are more streamlined and efficient. This is the perfect complement to the firm’s personal, hands-on approach.

Please browse our brochure: http://issuu.com/aroraengineers/docs/acbfinalbrochure or visit our website: www.aroraengineers.com
JOB DESCRIPTION

Working Title: Associate Fire Protection Engineer

<table>
<thead>
<tr>
<th>FIRE/LIFE SAFETY DESIGNER</th>
<th>Status:</th>
<th>Exempt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of needed supervision:</td>
<td>Medium</td>
<td>Supervisor:</td>
</tr>
<tr>
<td>Level of independent judgment</td>
<td>Medium</td>
<td>Department:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fire/Life Safety Department Head</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Planning and Design</td>
</tr>
</tbody>
</table>

Overall Responsibility: Candidate will be responsible for the design, analysis, evaluation, inspection, testing, and maintenance of fire and life safety systems. Candidate should be well versed in the design of water-based suppression systems, special hazard extinguishing systems (e.g., FM-200), fire alarm and detection systems, standpipe systems, egress systems, emergency lighting systems, and fire pumps. Familiarity with ICC codes and how state and local jurisdictions adopt and amend model building codes is desired. Candidate should be familiar with NFPA 13, 14, 15, 20, 24, 25, 30, 72, 92, 101, 130, and 2001. Knowledge of fire service operations and how they interface with fire protection and fire alarm systems is helpful.

Essential Functions:
1. In coordination with the Fire/Life Safety Department Head, fire protection engineers, and designers, meets to discuss the project scope, schedule, phasing, staging, specific site issues, and pertinent code issues.
2. Provides technically accurate, complete construction documents to the client that adheres to all code requirements, company specifications and the engineering standards of practice.
3. Provides conceptual, working, and detailed design of fire protection, special hazard suppression, and fire alarm systems for new and existing facilities with the aid of more experienced design personnel.
4. Reviews, evaluates, analyzes technical reports, correspondence, and proposals.
5. Ensures code compliance.
6. Develops, proposes, and supports design solutions to design and engineering problems.
7. Performs site surveys, inspections, and generates punch lists.
8. Attends internal meetings as well as client meetings and participates in a tactful, effective way.
9. Seeks technical guidance, explanations, and information from other design team members.
10. Grows and progresses engineering knowledge in fire protection engineering.

Secondary Functions:
1. Attends professional society meetings and reports on current developments.
2. Attends training as approved by Fire/Life Safety Department Head.
3. Work on becoming a licensed professional engineer.
4. Acquire other certifications helpful to the company’s work.

Needed Skills:
1. Has general knowledge of fire protection engineering, including suppression, hazard analysis, egress, code consulting, fire dynamics, smoke management, and egress systems as they apply to a wide variety of occupancies, structures, and facilities.
2. Knowledgeable in array of NFPA codes and standards, including, but not limited to: 13, 14, 15, 20, 24, 25, 30, 72, 92, 101, 130, and 2001.
3. Familiar with model building codes and their fire protection and life safety requirements.
5. Generally familiar with trade concepts, engineering methods, project delivery systems, and construction technologies.
6. Proficient in AutoCAD 2008 or higher.
8. Knowledge of MS Office Suite
9. Experience preparing, editing, and reviewing fire alarm, automatic sprinkler, and special hazard suppression design documents, specifications, and shop drawings.
10. Familiar with passive building fire protection, including fire rated construction, firestopping, fire rated doors and windows.
11. Has experience in construction inspection, developing punch lists, or construction management.
12. Candidate should be able to orally communicate complex design and technical ideas to other designers and engineers as well as people with a nontechnical background.
13. Candidate must possess excellent writing skills, capable of writing reports, letters, and facilitating effective internal and external communication.
14. Candidate should be comfortable delivering technical presentations designed to convey advanced technical ideas.
Education/Experience Minimum: Bachelor’s Degree in Fire Protection Engineering or Fire Protection Engineering Technology with 0-2 years experience in fire protection engineering related work OR Bachelor’s Degree in Engineering or Engineering Technology with 2-4 years experience in fire protection engineering related work

Preferred Certifications: Engineer in Training, NICET Certifications

Professional Development: Candidate should be active in fire protection engineering technical societies. Membership in any code or standard technical committees is also desirable. Candidate should be engaged in various learning and professional development activities in order to increase technical and professional knowledge in fire protection engineering.

Benefits: Full Time Position, 401k, Health, Dental, Vision, Life Insurance, Paid Time Off, Time for professional societies/meetings, paid society dues, certification costs company paid, Secondary Benefits, etc.

Company Description
ARORA ENGINEERS, INC. (ARORA) - MBE For more than 20 years, Arora’s solid mix of industry knowledge and expertise allows the firm to offer a broad spectrum of engineering services, including oversight, project management, and design of new and existing mechanical, electrical, plumbing, electrical aeronautical, fire protection, and IT building and airfield systems. Arora also provides construction management and facilities maintenance management. Arora’s multidisciplinary approach offers clients comprehensive, cost-effective solutions to their most challenging situations. The firm’s technical staff has both the understanding of and experience in engineering and integration to enable the successful programming, design, and implementation of specialized building systems. From the initial design process, bid services, and cost estimation to construction and ongoing facility maintenance and management, Arora’s team of professionals is equipped to address any problem, and most importantly, to find the right solution. Arora understands the critical nature of responsiveness and quality control. By coupling highly educated and experienced engineers with leading-edge engineering practices and technologies, Arora’s efforts are more streamlined and efficient. This is the perfect complement to the firm’s personal, hands-on approach.

Please browse our brochure: http://issuu.com/aroraengineers/docs/acbfinalbrochure

or visit our website: www.aroraengineers.com

Fire Protection Engineer Job Opening at AEGIS Engineering

Company: AEGIS Engineering

Location: Mukilteo, WA

Description:
AEGIS Engineering is a small full-service firm located near Seattle. We provide fire safety systems design, building code consulting and performance-based design services throughout the western US.

The ideally qualified candidate will have:

Credentials and Experience
- EIT/FE certification or PE license
- Minimum 2+ years experience as fire protection designer / consultant

Responsibilities
- Report writing
- Drawing review
- Computer modeling
- CAD Drafting

How to Apply
- Send to the e-mail address below
- Subject: FPE - [your name]
- Include a cover letter describing how you are particularly qualified to support our growing team
- Attach your résumé

Personal Qualities
- Strong interpersonal skills
- Ability to lead by example
- Personal integrity
- Initiative

Competencies
- Proven ability to interpret and apply IBC fire protection and life safety code provisions
- Strong written and verbal communication skills
- Strong problem analysis and solving skills

On the web at www.AEGISEngineering.com

To Apply: 1359955-aegise@jobcoin.com
EMPLOYMENT OPPORTUNITY

Aon Fire Protection Engineering offers careers for those seeking challenges and the opportunity to grow in more than one aspect of their career. With offices conveniently located in major US cities and a respected global presence, Aon Fire Protection Engineering offers exciting project opportunities in a vast range of industries and projects throughout the world. Our offices are filled with motivated people solving problems, researching new ideas, and working to keep people safe. It's a line of work that presents challenges - and extraordinary rewards - for talented people ready for a vibrant, gratifying career. Currently, we have exciting career opportunities for both a Senior Fire Protection Consultant and an Entry Level Consultant in our New York TriState Office, with locations in Stamford, CT and Manhattan, NY.

Duties and Responsibilities:

The open positions will require the selected candidates to prepare building and fire code consulting and analysis, develop fire protection system designs and associated calculations, complete evaluations of existing fire protection systems, and prepare life safety surveys / studies. Candidates must have the capability to work closely as part of a team of fire protection and building/life safety code professionals. Candidates must possess quality interpersonal and communications skills required to interface directly with clients and building and fire officials.

Senior Consultant candidates must have proven project management and organizational skills, and be capable of managing multiple large and small projects simultaneously. Senior Consultant candidates must also be capable and interested in participating in business development efforts.

Special Skills and Requirements:

Consultant candidates should have a B.S. degree in Fire Protection, Electrical, or Mechanical Engineering or Architecture. Candidates should also be interested in, and capable of obtaining their engineering or architectural license. Consultant level candidates should have a general familiarity with all areas of fire protection systems, a general understanding of building codes and standards, and the ability and interest to apply these skills to solve real world problems.

Senior Consultant candidates should have 10 to 15 years of experience of increasing responsibility, and be licensed engineers or architects. Senior Consultant Candidates should have a broad range of both technical and project management experience. A keen knowledge of building codes, related standards, and their application to building design is required.

Overnight travel and a valid driver’s license is required.

Interested candidates should contact:
Shirley Grobart, CDR
HR Manager Talent Acquisition - Aon Recruiting
847-953-2208
shirley.grobart@aon.com
Mexico official: gas buildup, spark caused state oil company blast that killed 37

MEXICO CITY – A gas buildup ignited by an electrical spark or other heat source caused the blast that killed 37 people and wounded dozens of others last week at the state oil company’s headquarters, Mexico's attorney general said.

But Attorney-General Jesus Murillo Karam said investigators were still looking for the source of the gas, and revising records of building inspections to determine why Petroleos Mexicanos had not discovered the gas accumulation. As a state company, Pemex is responsible for inspecting its own buildings.

Murillo said late Monday that an investigation by Mexican, Spanish, U.S. and British experts into the petroleum giant's worst disaster in more than a decade found no evidence of explosives in the Thursday afternoon blast that collapsed several lower floors of the Pemex administrative building.

He said the investigators believe that an electrical spark or other source of heat had detonated the gas.

With the exception of three victims, none of those killed had the burn marks or damaged ear drums that are typical evidence of a bombing, he said. Nor was there any sign of a crater or fracturing of the building's steel beams, also common signs of the detonation of an explosive device.

Murillo said officials had yet to discover the source of what initial evidence indicated to be methane gas that leaked from a duct or tunnel or came from the sewer system and built up in the basement of the building.

Murillo said that an independent contractor had told investigators that he was working with a crew of three men performing maintenance in the basement of building B2. The contractor said the basement wasn’t lit, so his crew had rigged illumination by attaching a crude electric cable to a power source in the ceiling.

The contractor told investigators that seconds after he moved to a higher floor, he heard a noise and then the building was rocked by an explosion. The three men were found dead in the lower basement with burn marks, one with a fragment of cable stuck to his body. They had no evidence of the dismemberment typical in the detonation of explosives.

Murillo described the blast as a "diffuse" explosion whose blast moved slowly and horizontally, typical of the detonation of a cloud of gas, rather than an explosion that would have emanated from a relatively compact source like a bomb.

He said laboratory tests had turned up "zero" evidence of any explosive.

"We've been able to determine that the explosion was caused by an accumulation of gas in the basement of the building," he said. "This explosion, at its peak, generated an effect on the structures of the floors of the building, first pushing them up and then causing them to fall, and that was the primary cause of deaths in the building."

The announcement late Monday ended days of a near-total lack of information about the potential cause of the incident. The sparse information spawned a torrent of complaints about government secrecy and speculation about the cause of the blast, most focusing on the possibility that it was intentional.

The suspicions of foul play became so intense that Murillo insisted on displaying photos of a backpack found in the rubble in order to prove to the public that it contained makeup, and not a suspicious, potentially explosive device as reported by some Mexican media earlier in the day.

Murillo described the blast as a "diffuse" explosion whose blast moved slowly and horizontally, typical of the detonation of a cloud of gas, rather than an explosion that would have emanated from a relatively compact source like a bomb.

He said laboratory tests had turned up "zero" evidence of any explosive.

"We've been able to determine that the explosion was caused by an accumulation of gas in the basement of the building," he said. "This explosion, at its peak, generated an effect on the structures of the floors of the building, first pushing them up and then causing them to fall, and that was the primary cause of deaths in the building."

The announcement late Monday ended days of a near-total lack of information about the potential cause of the incident. The sparse information spawned a torrent of complaints about government secrecy and speculation about the cause of the blast, most focusing on the possibility that it was intentional.

The suspicions of foul play became so intense that Murillo insisted on displaying photos of a backpack found in the rubble in order to prove to the public that it contained makeup, and not a suspicious, potentially explosive device as reported by some Mexican media earlier in the day.
DON’T MISS THIS EVENT!
The Greater Atlanta Chapter of the Society of Fire Protection Engineers (SFPE) announces an outstanding opportunity for professional development and industry networking.

KEYNOTE SPEAKER:
Chief Ronny J. Coleman,
Former California State Fire Marshal
President, Fireforceone

HIGHLIGHTS:
- Exhibitor Showcase March 12 and 13 featuring important products and services
- Cutting edge technology exhibits
- Meet industry specialists
- Three days of 1-day and 2-day professional seminars showcasing leading fire and life safety topics
- More than 40 outstanding speakers featuring industry leaders with unique expertise, insight, and technical knowledge, who are on the forefront of fire and life safety issues
- NICET hours/credits
- FFSTC Approved Courses
- Professional Development Hours
- Completion certificates issued

NETWORKING OPPORTUNITIES:
Join your colleagues and visit with speakers at the Sponsored Welcome Reception on March 12th at 4:30pm with free appetizers and cash bar.

SESSION TOPICS:

WHO SHOULD ATTEND?
Engineers, Architects, Contractors, Insurance Professionals, Risk Managers, Fire Inspectors, Designers, Fire Chiefs, Loss Prevention, Building and Fire Officials

Register online starting in January at www.sfpeatlanta.org
PROGRAM OFFERINGS AND TIMES SUBJECT TO CHANGE AND/OR CANCELLATION
Pre-Conference Seminars
March 11 & March 12

<table>
<thead>
<tr>
<th>Attendee*</th>
<th>AHJ**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon-Tue (Seminars 1-2)</td>
<td>$499</td>
</tr>
<tr>
<td>Mon-Tue (Seminars 3A & B)</td>
<td>$499</td>
</tr>
<tr>
<td>Mon/Tue (Seminar 3A or B)</td>
<td>$249</td>
</tr>
<tr>
<td>Tue (Seminars 4-7)</td>
<td>$249</td>
</tr>
<tr>
<td>Tue (Seminar 8 PE Exam Prep)</td>
<td>$599</td>
</tr>
</tbody>
</table>

Conference Only March 13

<table>
<thead>
<tr>
<th>Attendee</th>
<th>AHJ**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wed (Sessions 1-4)</td>
<td>$249</td>
</tr>
</tbody>
</table>

Pre-Conference Seminars & Conference Combination Prices

<table>
<thead>
<tr>
<th>Attendee*</th>
<th>AHJ**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon-Tue (Seminar 1 or 2) & Wed</td>
<td>$599</td>
</tr>
<tr>
<td>Mon-Tue (Seminars 3A & B) & Wed</td>
<td>$599</td>
</tr>
<tr>
<td>Mon/Tue (Seminar 3A or B) & Wed</td>
<td>$449</td>
</tr>
<tr>
<td>Tue (Seminars 4-7) & Wed</td>
<td>$449</td>
</tr>
<tr>
<td>Tue (Seminar 8 Exam Prep) & Wed (Free!)</td>
<td>$599</td>
</tr>
</tbody>
</table>

Conference Program Advertising

- Back Cover: $750
- Full Page: $500
 (6.25 x 9.25 with bleed, 6 x 9 trim size, 5 x 8 live area)
- Half Page: $250
 (5.64 x 4.26 with bleed 5 x 4 trim size, 4 x 3 live area)
- Business Card: $100
 (3.5 x 2 with bleed, 3 x 2 trim size, 2 x 1 live area)

Advertising Deadline - March 1, 2013
Files submitted should be high-res PDF
Email ads to Stacy@accentcreativegroup.com
For additional advertising details, please visit www.sfpeatlanta.org

Register

Register by Mail:
Send registration form and check to:
SFPE Greater Atlanta Chapter
c/o Tracy Franklin
P.O. Box 889 Suwanee, GA 30024
Make checks payable to:
SFPE Greater Atlanta Chapter

Register Online:
www.sfpeatlanta.org
MC, Visa, Discover, and AMEX accepted

* Pre-registration by 3/1 required for Pre-Conference Seminars.
** Public fire and building officials only. Current approved identification required.
Prices valid until March 1, 2013
AFAANJ offers 3 days of training in March 2013.

4 Two Hour Required Courses for Licensees and Applicants
Tuesday March 26, 2013

Basic Fire Alarm Systems (NICET Prep)
Wednesday March 27, 2013

Fire Alarm System Testing & Inspection
Thursday March 28, 2013

All three days of seminars are recognized by the New Jersey Division of Consumer Affairs for Continuing Education. All three are also accepted by the New Jersey Division of Fire Safety and NICET for CEU's.

Train yourself, your employees, meet certification and license requirements and support the Automatic Fire Alarm Association of New Jersey, Inc. www.AFAANJ.org
Protecting Life Safety

An In-depth Review of Emergency Communications

Whether you’re the engineer, building owner or facility manager, is there more you can do to assure the safety and general welfare of those located in and around your building?

Are you confident that the people in your charge are well protected in the event of an emergency?

The public demands protection from un-defendable situations. Conducting a systematic plan to prepare for and manage emergencies is critical. Although many security directors, facility managers, building owners, engineers and school administrators are still unclear on how to effectively prepare and communicate critical information in case of an emergency.

Join us for a ½ day of in-depth review of Emergency Communications to provide better protection and respond to emerging threats more effectively.

• What is NFPA 1600 (2010 & 2013 Edition)?
 – How can you use it to design an action plan to protect people?

• What are the challenges / obstacles of enacting a plan?
 – Are there liabilities? What about protections?

• Review the new UL 2572 Standard for survivability and supervision
 – Does your Emergency Communication System meet the requirements?

• Discuss new technology that delivers clear concise emergency notifications
 – Integrated solutions provide outdoor sirens, broadcast emails, text messaging, phone calls, computer pop-ups and visual signage

Tom Von Essen, 30th Commissioner, New York City Fire Department Commissioner will join us in a discussion on the importance of real-time emergency communication systems to inform, warn, and direct people to take shelter, relocate or evacuate in the face of a threat to life.

Morning session runs from 8:00 a.m. – 12:00 p.m.

Optional Lunch Session available! We invite you to stay for lunch while we provide a brief 20 minute overview of the latest in touch-screen technology. The S3 Series,™ small addressable fire alarm system is the first in it’s class to offer an intuitive, user-friendly, touch-screen interface, making fire alarm panel operation and system maintenance a breeze.

Stay up-to-date with the industry while earning (4)Continuing Professional Development (CPD) credits.

Join us at one of the following cities to find out more about this important topic and how to better protect those around you.

<table>
<thead>
<tr>
<th>Date</th>
<th>City</th>
<th>Property Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 7</td>
<td>Quincy, MA</td>
<td>Boston Marriott Quincy</td>
</tr>
<tr>
<td>March 26</td>
<td>Seattle, WA</td>
<td>TBD</td>
</tr>
<tr>
<td>March 27</td>
<td>Irvine, CA</td>
<td>Irvine Marriott</td>
</tr>
<tr>
<td>April 3</td>
<td>Phoenix, AZ</td>
<td>Phoenix Learning Center</td>
</tr>
<tr>
<td>April 4</td>
<td>Dallas, TX</td>
<td>TBD</td>
</tr>
<tr>
<td>April 17</td>
<td>Denver, CO</td>
<td>Courtyard Denver Airport</td>
</tr>
<tr>
<td>April 18</td>
<td>Chicago, IL</td>
<td>JW Marriott Hotel Chicago</td>
</tr>
<tr>
<td>April 30</td>
<td>Plantation, FL</td>
<td>Renaissance Ft Lauderdale</td>
</tr>
<tr>
<td>May 8</td>
<td>East Elmhurst, NY</td>
<td>New York LaGuardia Airport Marriott</td>
</tr>
<tr>
<td>May 9</td>
<td>Greenbelt, MD</td>
<td>Greenbelt Marriott</td>
</tr>
<tr>
<td>May 15</td>
<td>Atlanta, GA</td>
<td></td>
</tr>
</tbody>
</table>
The liquid contents inside an aboveground flammable or liquid storage tank emit vapors. It is vapor rather than the liquid that ignites when mixed in certain proportions with air in the presence of an ignition source.

Vapor pressure is the pressure exerted by vapor above the surface of a liquid in a closed container. It is caused by evaporation and is stabilized by confinement in a closed container to a pressure characteristic of a specific liquid. Vapor pressures of flammable liquids are an important consideration in fire prevention. They give the relative speed of evaporation: the higher the vapor pressure, the greater the evaporation rate and the more vapor escape potential. The vapor pressure of a substance depends upon the temperature: as the vapors are heated, the pressure increases.

The primary function of an emergency relief vent is to provide a controlled opening on a tank that will be large enough to prevent rupturing of the tank under severe pressure increases caused by proximity to intense fire. Dual wall tanks require two emergency vents: one for the primary tank and one for the secondary tank. The secondary emergency vent is sized to match the primary emergency vent.

During fire exposure, the tank surface that is not in contact with the stored liquid eventually will heat to the point where it may fail, but it should not be an explosive rupture if the venting device works properly. Several design and equipment options exist to provide emergency vent capacity.

Currently — and for many existing installations — National Fire Protection Association 30, *Flammable and Combustible Liquids Code*, allows the use of a weak roof-to-shell welded seam on vertical tanks in lieu of a vent opening. These weak seams are designed to fail prior to the tank shell when an overpressure condition occurs, allowing excess pressure to be relieved without a significant loss of liquid. American Petroleum Institute Standard 650, *Welded Steel Tanks for Oil Storage*, allows this design, but Underwriters Laboratories UL 142, *Steel Aboveground Tanks for Flammable and Combustible Liquids*, does not. NFPA 30 is being revised to remove the weak roof-to-shell seam design option.

Floating roof tanks are inherently capable of relieving internal pressure because the tank roof rises and falls with the liquid level. Some tanks may be fitted with a large diameter membrane that will burst under pressure and relieve excess internal pressure.

Pressure relieving devices such as weighted cover style emergency vents (as shown in the photo above), loose manhole covers, rupture or burst disks, remote-actuated relief devices, or other pressure relieving equipment may be used in place of pressure relieving tank designs. (See Coffee Break Training FP-2010-42 for one method of emergency venting using loose manhole covers.)

For additional information, refer to the following report by Jeff Shapiro, P.E. for the Steel Tank Institute, at http://www.steeltank.com/Portals/0/pubs/Venting%20Q%20and%20A.pdf and NFPA 30.
Learning Objective: The student shall be able to explain and calculate the wetted area of an aboveground flammable and combustible liquid tank.

Atmospheric, aboveground flammable and combustible liquid storage tanks that rely solely on pressure-relieving devices for emergency venting must have normal and emergency vents capable of preventing the rupture of the shell or bottom of a vertical tank or the shell or ends of a horizontal tank. An aboveground tank is one that is installed above grade, at grade or below grade without backfill, leaving its exterior surfaces exposed to the atmosphere.

The combined air flow capacity of the normal and emergency vents is measured in cubic feet per hour (m³/hour) of free flowing air through the venting assemblies. The minimum air flow is derived from the “wetted area” of a storage tank, which is the surface area of the tank that normally is in contact with the liquid contents. Once the wetted area is established, minimum air flow volumes are found in a table in National Fire Protection Association 30, Flammable and Combustible Liquids Code.

To calculate the wetted area, NFPA 30 measures it as a portion of the entire tank external surface area that is exposed to the atmosphere. An adjustment is based on the shape of the tank as follows:

<table>
<thead>
<tr>
<th>Aboveground Tank Type*</th>
<th>Amount of Exposed Area for Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere or spheroid</td>
<td>55%</td>
</tr>
<tr>
<td>Horizontal tank</td>
<td>75%</td>
</tr>
<tr>
<td>Rectangular tank</td>
<td>100%, excluding the top surface of the tank</td>
</tr>
<tr>
<td>Vertical tank</td>
<td>First 30 feet (9 m) above grade</td>
</tr>
</tbody>
</table>

*Aboveground tanks operating at a gauge pressure of more than 1 psi (6.0 kPa) employ different guidelines.

For example, the illustrated tank is less than 30 feet (9 m) tall, so its entire surface area is included in the wetted area calculation. Assuming that the tank is 20 feet (6.1 m) in diameter and 28 feet (8.5 m) tall, the formula to determine its wetted area is

\[
\text{Wetted area} = (\pi d)H
\]

Where,

\[
\pi = 3.14
\]

\[
d = \text{tank diameter}
\]

\[
H = \text{tank height}
\]

In U.S. Customary Units: \((3.14)(20)(28) = 1,758.4 \text{ ft}^2 \text{ wetted area}\)

In SI Units: \((3.14)(6.1)(8.5) = 162.8 \text{ m}^2 \text{ wetted area}\)

Next week’s Coffee Break Training will provide calculation examples of other tank configurations. Subsequent Coffee Break Training items will explain ventilation requirements derived from the wetted area calculation. For additional information, refer to NFPA 30, Chapter 22.

To calculate the wetted area, NFPA 30 measures it as a portion of the entire tank external surface area that is exposed to the atmosphere. An adjustment is based on the shape of the tank as follows:

<table>
<thead>
<tr>
<th>Aboveground Tank Type*</th>
<th>Amount of Exposed Area for Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere or spheroid</td>
<td>55%</td>
</tr>
<tr>
<td>Horizontal tank</td>
<td>75%</td>
</tr>
<tr>
<td>Rectangular tank</td>
<td>100%, excluding the top surface of the tank</td>
</tr>
<tr>
<td>Vertical tank</td>
<td>First 30 feet (9 m) above grade</td>
</tr>
</tbody>
</table>

*Aboveground tanks operating at a gauge pressure of more than 1 psi (6.0 kPa) employ different guidelines.

For example, the illustrated tank is less than 30 feet (9 m) tall, so its entire surface area is included in the wetted area calculation. Assuming that the tank is 20 feet (6.1 m) in diameter and 28 feet (8.5 m) tall, the formula to determine its wetted area is

\[
\text{Wetted area} = (\pi d)H
\]

Where,

\[
\pi = 3.14
\]

\[
d = \text{tank diameter}
\]

\[
H = \text{tank height}
\]

In U.S. Customary Units: \((3.14)(20)(28) = 1,758.4 \text{ ft}^2 \text{ wetted area}\)

In SI Units: \((3.14)(6.1)(8.5) = 162.8 \text{ m}^2 \text{ wetted area}\)

Next week’s Coffee Break Training will provide calculation examples of other tank configurations. Subsequent Coffee Break Training items will explain ventilation requirements derived from the wetted area calculation. For additional information, refer to NFPA 30, Chapter 22.

To calculate the wetted area, NFPA 30 measures it as a portion of the entire tank external surface area that is exposed to the atmosphere. An adjustment is based on the shape of the tank as follows:

<table>
<thead>
<tr>
<th>Aboveground Tank Type*</th>
<th>Amount of Exposed Area for Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere or spheroid</td>
<td>55%</td>
</tr>
<tr>
<td>Horizontal tank</td>
<td>75%</td>
</tr>
<tr>
<td>Rectangular tank</td>
<td>100%, excluding the top surface of the tank</td>
</tr>
<tr>
<td>Vertical tank</td>
<td>First 30 feet (9 m) above grade</td>
</tr>
</tbody>
</table>

*Aboveground tanks operating at a gauge pressure of more than 1 psi (6.0 kPa) employ different guidelines.

For example, the illustrated tank is less than 30 feet (9 m) tall, so its entire surface area is included in the wetted area calculation. Assuming that the tank is 20 feet (6.1 m) in diameter and 28 feet (8.5 m) tall, the formula to determine its wetted area is

\[
\text{Wetted area} = (\pi d)H
\]

Where,

\[
\pi = 3.14
\]

\[
d = \text{tank diameter}
\]

\[
H = \text{tank height}
\]

In U.S. Customary Units: \((3.14)(20)(28) = 1,758.4 \text{ ft}^2 \text{ wetted area}\)

In SI Units: \((3.14)(6.1)(8.5) = 162.8 \text{ m}^2 \text{ wetted area}\)

Next week’s Coffee Break Training will provide calculation examples of other tank configurations. Subsequent Coffee Break Training items will explain ventilation requirements derived from the wetted area calculation. For additional information, refer to NFPA 30, Chapter 22.

To calculate the wetted area, NFPA 30 measures it as a portion of the entire tank external surface area that is exposed to the atmosphere. An adjustment is based on the shape of the tank as follows:

<table>
<thead>
<tr>
<th>Aboveground Tank Type*</th>
<th>Amount of Exposed Area for Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere or spheroid</td>
<td>55%</td>
</tr>
<tr>
<td>Horizontal tank</td>
<td>75%</td>
</tr>
<tr>
<td>Rectangular tank</td>
<td>100%, excluding the top surface of the tank</td>
</tr>
<tr>
<td>Vertical tank</td>
<td>First 30 feet (9 m) above grade</td>
</tr>
</tbody>
</table>

*Aboveground tanks operating at a gauge pressure of more than 1 psi (6.0 kPa) employ different guidelines.

For example, the illustrated tank is less than 30 feet (9 m) tall, so its entire surface area is included in the wetted area calculation. Assuming that the tank is 20 feet (6.1 m) in diameter and 28 feet (8.5 m) tall, the formula to determine its wetted area is

\[
\text{Wetted area} = (\pi d)H
\]

Where,

\[
\pi = 3.14
\]

\[
d = \text{tank diameter}
\]

\[
H = \text{tank height}
\]

In U.S. Customary Units: \((3.14)(20)(28) = 1,758.4 \text{ ft}^2 \text{ wetted area}\)

In SI Units: \((3.14)(6.1)(8.5) = 162.8 \text{ m}^2 \text{ wetted area}\)

Next week’s Coffee Break Training will provide calculation examples of other tank configurations. Subsequent Coffee Break Training items will explain ventilation requirements derived from the wetted area calculation. For additional information, refer to NFPA 30, Chapter 22.

To calculate the wetted area, NFPA 30 measures it as a portion of the entire tank external surface area that is exposed to the atmosphere. An adjustment is based on the shape of the tank as follows:

<table>
<thead>
<tr>
<th>Aboveground Tank Type*</th>
<th>Amount of Exposed Area for Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere or spheroid</td>
<td>55%</td>
</tr>
<tr>
<td>Horizontal tank</td>
<td>75%</td>
</tr>
<tr>
<td>Rectangular tank</td>
<td>100%, excluding the top surface of the tank</td>
</tr>
<tr>
<td>Vertical tank</td>
<td>First 30 feet (9 m) above grade</td>
</tr>
</tbody>
</table>

*Aboveground tanks operating at a gauge pressure of more than 1 psi (6.0 kPa) employ different guidelines.

For example, the illustrated tank is less than 30 feet (9 m) tall, so its entire surface area is included in the wetted area calculation. Assuming that the tank is 20 feet (6.1 m) in diameter and 28 feet (8.5 m) tall, the formula to determine its wetted area is

\[
\text{Wetted area} = (\pi d)H
\]

Where,

\[
\pi = 3.14
\]

\[
d = \text{tank diameter}
\]

\[
H = \text{tank height}
\]

In U.S. Customary Units: \((3.14)(20)(28) = 1,758.4 \text{ ft}^2 \text{ wetted area}\)

In SI Units: \((3.14)(6.1)(8.5) = 162.8 \text{ m}^2 \text{ wetted area}\)

Next week’s Coffee Break Training will provide calculation examples of other tank configurations. Subsequent Coffee Break Training items will explain ventilation requirements derived from the wetted area calculation. For additional information, refer to NFPA 30, Chapter 22.

To calculate the wetted area, NFPA 30 measures it as a portion of the entire tank external surface area that is exposed to the atmosphere. An adjustment is based on the shape of the tank as follows:

<table>
<thead>
<tr>
<th>Aboveground Tank Type*</th>
<th>Amount of Exposed Area for Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere or spheroid</td>
<td>55%</td>
</tr>
<tr>
<td>Horizontal tank</td>
<td>75%</td>
</tr>
<tr>
<td>Rectangular tank</td>
<td>100%, excluding the top surface of the tank</td>
</tr>
<tr>
<td>Vertical tank</td>
<td>First 30 feet (9 m) above grade</td>
</tr>
</tbody>
</table>

*Aboveground tanks operating at a gauge pressure of more than 1 psi (6.0 kPa) employ different guidelines.

For example, the illustrated tank is less than 30 feet (9 m) tall, so its entire surface area is included in the wetted area calculation. Assuming that the tank is 20 feet (6.1 m) in diameter and 28 feet (8.5 m) tall, the formula to determine its wetted area is

\[
\text{Wetted area} = (\pi d)H
\]

Where,

\[
\pi = 3.14
\]

\[
d = \text{tank diameter}
\]

\[
H = \text{tank height}
\]

In U.S. Customary Units: \((3.14)(20)(28) = 1,758.4 \text{ ft}^2 \text{ wetted area}\)

In SI Units: \((3.14)(6.1)(8.5) = 162.8 \text{ m}^2 \text{ wetted area}\)

Next week’s Coffee Break Training will provide calculation examples of other tank configurations. Subsequent Coffee Break Training items will explain ventilation requirements derived from the wetted area calculation. For additional information, refer to NFPA 30, Chapter 22.
UL warns of counterfeit UL Mark on fire sprinkler (Release 13PN-06)

Northbrook, IL - January 31, 2013 - The following is a notification from UL to distributors, contractors, fire departments, regulatory agencies, and authorities having jurisdiction that the fire sprinkler identified below bears a counterfeit UL Mark for the United States and Canada. The sprinkler was not manufactured by Nanjing Fire Protection Technology Co Ltd and the thermo bulb was not manufactured by Job, GmbH.

The Fire Sprinkler has not been evaluated by UL to the appropriate Standards for Safety and it is unknown if the fire sprinkler complies with any safety requirements.

Name of Product: Fire Sprinkler, Model NX005

Identification: On the product: The counterfeit fire sprinkler can be identified by "NX" and "C-I" marking on the wrench boss of the fire sprinkler frame and may have model NX005 on the sprinkler deflector. Sprinklers manufactured by Nanjing Fire Protection Technology Co Ltd that are authorized to bear the UL Mark do not have "NX" and "C-I" marking on the wrench boss.

Photographs of the product with counterfeit UL Mark:

http://sprinkler.blog.nfpa.org/2013/02/ul-warns-of-counterfeit-ul-mark-on-fire-sprinklers.html

I-STAIRS and the New Residential Construction Materials and Methods - A Fire Fighter’s Nightmare

Attached is info on a new type of stair construction for residential buildings. The stairs are constructed using 2x4s for the main support. The triangles shown hold the stair riser and tread in place. The metal on the bottom of the tread and riser is essentially a gusset plate, similar to truss gusset plates. The inventor of the products has passing on the info below. According to him, if the stairs are on the main floor to second floor configuration, the bottom needs to have drywall. If it is coming from the basement in an unfinished area, no drywall or other protection in required. The entire stair assembly is manufactured in a factory and shipped to the jobsite. The attached video link describes this type of construction and the details of how it burns quickly looses structural integrity for quick collapse.

http://www.youtube.com/watch?v=e7m8TViEUOk
MEETING NOTICE

Date: March 4, 2013

Place: Hanover Manor
16 Eagle Rock Avenue
East Hanover, NJ 07936

Price: $30.00

Dinner: 5:00-6:00 (Cash bar for mixed drinks)
Dinner at 6 PM

Topic: NFPA speaker to review trends in fire loss statistics

Please note for this meeting:
All officers, directors and committee chairman are requested to attend a meeting at 4:00 p.m. at the Hanover Manor.

PLEASE COMPLETE AND RETURN WITH YOUR CHECK PAYABLE TO “SFPE NJ CHAPTER” TO:

Vicki Serafin
Affiliated FM
400 Interpace Parkway, Bldg C - 3rd Floor
Parsippany, NJ 07054-1196
vicki.serafin@affiliatedfm.com

OR PAY AT THE DOOR

NAME: __

COMPANY:___________________________TELEPHONE:___________________________
Meeting Dates/Programs 2012-2013

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 4</td>
<td>NFPA speaker to review trends in fire loss statistics—Speaker: Marty Ahrens, Fire Analysis and Research Division: National Fire Protection Association</td>
</tr>
<tr>
<td>April 26</td>
<td>Chapter Annual Spring Seminar- Newark, NJ</td>
</tr>
<tr>
<td>May 6</td>
<td>Reliable Valve Trailer and NJFSAB Fire Sprinkler Burn Trailer—Speaker: Tom Fields</td>
</tr>
<tr>
<td>June 3</td>
<td>Chemical Safety Board speaker on Large Loss Causes and Lessons Learned ANNUAL MEETING—Officer & Director Elections</td>
</tr>
<tr>
<td>June 17</td>
<td>Scholarship golf outing at West Point</td>
</tr>
</tbody>
</table>
HELPFUL LINKS

ADAAG http://www.access-board.gov/adaag/about/index.htm
AFAA National http://www.afaa.org/
AFSA http://www.firesprinkler.org/
ANSI http://web.anisi.org/
ASHRAE http://www.ashrae.org/
Campus-Firewatch http://www.campus-firewatch.com/
Coffee Break Training http://www.usfa.dhs.gov/nfa/coffee-break/
CPSC http://www.cpsc.gov/
CSAA http://www.csaa.org/
Municipal Codes (E Codes) http://www.generalcode.com/Webcode2.html
FM Global http://www.fmglobal.com/
FSDANY http://www.fsdany.org/regs.htm
FSI http://www.firesprinklerinitiative.org/
FSSA http://www.fssa.net/
Fire Tech Productions—Nicet Training (FTP) http://www.firetech.com/
Home Fire Spklr Coalition http://www.homefiresprinkler.org/
AFAA-NJ http://www.afaanj.org/
National of Fire Equipment Distributors (NAFED) http://www.nafed.org/index.cfm

ADVERTISE IN THE FUSIBLE LINK

Do you want your business to be known by over 125 professionals in the local Fire Protection industry? Advertise in the Fusible Link. $100 per chapter fiscal year. Contact Vicki Serafin for more info: Vicki.serafin@affiliated.fm.com