President’s Message….

On Thursday, November 9 NJSFPE’s tour bus headed to Cranston Rhode Island to visit the Johnson Controls (TYCO) Technology Center. Devin O’Leary with Johnson Controls squeezed a whole lot of information about fire sprinklers in our visit to their Technology Center. We enjoyed a presentation on new technology that they are marketing for High Rack Storage that combines electronic heat detection with multiple sprinkler head activation. We enjoyed a hearty lunch followed by a tour of their fire sprinkler museum on the premises. We finished out the day with live activations of various types of sprinkler heads and a live fire suppression demonstration. This was a unique opportunity to see artifacts of the past and of current and future innovations in fire protection technology.

Come join us for our December meeting on Monday, December 4; we will be celebrating the holidays with a wine tasting and a buffet dinner followed by a presentation by Tristan MacKintosh, CEO with SafeSpill to discuss Spill Protection Systems for Flammable Liquids.

We are also expecting Vinnie from The Engineers’ Club who will have a basket raffle to support Veterans.

Paul
Chapter President
Kidde Recalls Fire Extinguishers with Plastic Handles Due to Failure to Discharge and Nozzle Detachment: One Death Reported

Name of Product:
Kidde fire extinguishers with plastic handles

Hazards: The fire extinguishers can become clogged or require excessive force to discharge and can fail to activate during a fire emergency. In addition, the nozzle can detach with enough force to pose an impact hazard.

Remedy: Replace

Consumers should immediately contact Kidde to request a free replacement fire extinguisher and for instruction on returning the recalled unit, as it may not work properly in a fire emergency.

Consumer Contact:
Kidde toll-free at 855-271-0773 from 8:30 a.m. to 5 p.m. ET Monday through Friday, 9 a.m. to 3 p.m. ET Saturday and Sunday, or online at www.kidde.com and click on “Product Safety Recall” for more information.
Fire suppression accident causes Microsoft Azure outage

5 October 2017 | By Sebastian Moss

Some North European customers affected

An unexpected release of inert fire suppression gas during routine maintenance at one of Microsoft’s European data centers set off a series of unfortunate events, causing a seven-hour outage.

On its Azure report page, Microsoft explained that after the gas was released, it caused the Air Handler Units to automatically cease operations, which in turn led to the ambient temperature rising - which then caused some systems to automatically shutdown.

The outage meant that some North European Azure customers had issues connecting to, or managing, their cloud resources between 13:27 and 20:15 UTC on 29 September.

Letting the gas out

“During a routine periodic fire suppression system maintenance, an unexpected release of inert fire suppression agent occurred. When suppression was triggered, it initiated the automatic shutdown of Air Handler Units (AHU) as designed for containment and safety. While conditions in the data center were being reaffirmed and AHUs were being restarted, the ambient temperature in isolated areas of the impacted suppression zone rose above normal operational parameters,” the company reported.

“Some systems in the impacted zone performed auto shutdowns or reboots triggered by internal thermal health monitoring to prevent overheating of those systems. The triggering of inert fire suppression was immediately known, and in the following 35 minutes, all AHUs were recovered and ambient temperatures had returned to normal operational levels.”

Microsoft continued: “Due to the nature of the above event and variance in thermal conditions in isolated areas of the impacted suppression zone, some servers and storage resources did not shutdown in a controlled manner. As a result, additional time was required to troubleshoot and recover the impacted resources.”

The company apologized to those affected and said it was taking steps to ensure similar incidents did not happen again, including undertaking suppression system maintenance analysis to find out why the gas was released in the first place.

This is not the first time fire suppression systems have caused issues in a data center: last year, the noise and vibration of gas being released damaged hard drives at an ING facility [pro tip: baffle your nozzles], bringing it offline for 10 hours.

A similar outage appears to have happened in Glasgow, with a “powerful blast” of gas damaging IT systems.

DCD has contacted Microsoft for further details and will update this story accordingly.
California wildfires losses at $3.3 billion and rising

Thomson Reuters
11/1/2017 8:47:00 AM

(Reuters) — Wildfires in California have caused insured losses of more than $3.3 billion, based on claims reported by 15 insurers, and the figure will rise, the California Department of Insurance said on Tuesday.

The number includes claims for 10,016 partial residential losses, 4,712 total residential losses, 728 commercial property losses, and 3,200 personal auto losses, California Insurance Commissioner Dave Jones said on a media call.

Since erupting on Oct. 8 and 9, the blazes in parts of Northern California have burnt more than 245,000 acres and destroyed an estimated 8,900 buildings as of Monday, according to the California Department of Forestry and Fire Protection.

The fires, which Mr. Jones said are now 99% contained, caused 43 deaths, including a firefighter.

California is the largest U.S. insurance market, where insurers collect about $289 billion in premiums per year, Mr. Jones said.

The $3.3 billion total is more than triple a $1.05 billion preliminary insured loss estimate by Mr. Jones on Oct 19. "I am concerned that the fires we just experienced are not an anomaly and may represent the new normal," Mr. Jones said. "We know that the climate is changing, and the temperature has been rising."

The devastation included neighborhoods in Santa Rosa, California, that had been deemed to be at low risk for fire, Mr. Jones said.

That could prompt some insurers to update how they determine which areas are potentially risky and then decide to write fewer policies in those places, Mr. Jones said.

Those decisions, if made, could affect "significant parts of California," Mr. Jones said.

Insurer Travelers Cos. Inc., which announced its third-quarter results on Oct. 19, also warned investors of large claims likely this quarter from the wildfires.

An Oct. 27 analysis by Boston-based AIR Worldwide pegged insured losses at an estimated $2 billion to $3 billion.

State Farm is California's largest homeowners insurer and sixth-largest commercial fire insurer, according to a Moody's Investors Service Inc. analysis.

Other large insurers in California include Farmers Insurance, CSAA Insurance Group, Travelers, Allstate Corp. and Chubb Ltd.
NJ SFPE Members Visit Tyco Labs

On November 9 instead of having a regular Chapter meeting at the Hanover Manor, there was a field trip to Tyco Labs in Cranston, RI. Below is a short history of the fire protection lab and a few photos from the visit. It was a great opportunity for those attending to learn more about the history of fire protection.

Site Plan

Site History

Tyco Fire Protection Products traces its roots to Providence Steam and Gas Pipe Company founded in 1850. Frederick Grinnell gained control of this company in 1869, pioneered the automatic sprinkler industry, and served as a major influence in the creation of the National Fire Protection Association in 1896.

In 1892, the original company became General Fire Extinguisher Company. In 1909, due to the increased demand for both fire sprinkler and mechanical piping products, a new foundry opened on Elmwood Avenue in Cranston, RI. Over the years, the company continued to prosper — changing its name to Grinnell Company, Grinnell Corporation, and later Grinnell Fire Protection Systems, Inc. In 1976, Grinnell Fire Protection Systems, Inc. was acquired by Tyco International. Consequently, for over 40 years, the Cranston site has been Tyco’s technology center for water-based fire protection and mechanical piping products.

In the backyard of where the foundry once stood and where you stand today, over 100 years of continual technological advancements in water-based fire protection and piping products have occurred. While Tyco International’s current four-acre site is just a small portion of the property originally purchased by General Fire Extinguisher in 1904, a remarkable history and impressive future remain.
Various NJ Chapter Members attending the Lab tour
Protect Your Warehouse from Emerging Fire Risks

How to arrange your warehouse to suppress flames and save money
Weston Baker Jr. | Nov 08, 2017

A robotic material handling unit (i.e., a robot) zips through a global toy manufacturer’s six-story distribution center. As the unit retrieves an open-top plastic container filled with freshly molded toy planes from an automatic storage and retrieval system (ASRS), sparks from a frayed electrical cable on the robot fly everywhere, igniting both the toy planes and the plastic container in which they are stored.

Due to the high concentration of combustibles, flames quickly spread through the rack, involving more plastic and cardboard containers filled with toys that kids dream about.

Ceiling sprinklers activate, but by then the fire has spread across aisles arranged as narrowly as possible to maximize storage space. The ASRS’s steel racking structure that holds tens of thousands of toys starts to warp and buckle from the heat. That framework, by the way, was supporting the roof....

Scenarios like these worry risk managers and warehouse managers alike as the risk of fire in automated warehouses grows. First, more warehouses are automating – using robots instead of humans to pick and pack orders for shipping. Secondly, automation is enabling warehouses to go higher and store goods more densely.

Not only do risk managers fear that a fire will destroy their inventory and interrupt their business, perhaps critically; they may also have more routine concerns:

- A lack of guidance on what they need for fire protection of these automatic storage arrangements.
- They don’t want to overspend on new fire protection.
- They especially don’t want to decrease their storage capacities – unless absolutely necessary.

Finding Answers

NFPA 13, Standard for the Installation of Sprinkler Systems, which is typically risk managers’ go-to source for fire protection guidelines, hasn’t weighed in yet on fire protection for automated warehouses; protection options for open-top containers are outside the scope of NFPA 13. Our team of researchers and engineers, however, has studied the fire protection challenge of automatic storage and retrieval systems for five years, and spent millions conducting large-scale fire tests, computer simulations and more than 200 water-flow tests.

The result? Evidence-based recommendations that help businesses to create optimal fire protection, and at a lower cost than previous recommendations for ASRS arrangements.

Understanding Automated Warehouses

Let’s look at how automated warehouses pose new risks.

In automated warehouses, while the containers may sometimes be cardboard or metal, goods are more often stored in plastic containers about the size of a household recycling bin. These containers burn much more severely than cardboard or wooden containers.
The containers themselves, no matter what material they're made of, can also create problems with water flow down through the rack where the sprinkler water is needed. When they're open-topped, as they often are, they collect sprinkler water and prevent it from cascading to lower tiers of burning product in a timely manner.

The rack structure itself can create a problem with water flow as well. Angle irons, which often hold the containers in place, can divert precious water away from the fire area.

Robots are more agile than people driving forklifts, so automated warehouses tend to optimize storage space by reducing the size of aisles – typically to 4 feet (1.2 meters) or less – as well as by minimizing the spaces between container loads, both horizontally and vertically.

While this arrangement increases storage efficiency, it also increases the ease with which fire can spread horizontally, not only within the rack of fire origin but also to adjacent racks due to the narrow aisle widths.

Get the Answers

Taking all this into consideration, the new guidelines in FM Global Loss Prevention Data Sheet 8-34 (PDF), Protection for Automatic Storage and Retrieval Systems (ASRS) can help risk managers and warehouse managers:

1. Determine how fire protection in automated warehouses can be optimized based on the type of storage racks and containers chosen.

2. Feel at ease that their fire protection systems will mitigate fire, water and smoke damage in the event of a fire.

3. Keep fire protection systems as affordable as possible.

Think Modular

![Modular IRAS Protection Scheme](image)

Traditional sprinkler protection that includes in-rack sprinklers accounts for both the in-rack sprinklers and the ceiling-level sprinklers operating simultaneously to control a fire. Our testing demonstrated that our approach creates an in-rack sprinkler arrangement that stops a fire dead in its tracks by the in-rack sprinklers located closest to the fire. This approach eliminates the chance of fire spreading too far vertically through the rack and triggering additional sprinklers at upper levels in the rack or at the ceiling. Fire spread will be limited to a single “module” of in-rack sprinklers and the amount of fire, water and smoke damage incurred may be substantially reduced. This level of fire protection is achieved without the need of horizontal barriers, helping reduce the cost of its installation.
In-rack Sprinkler Arrangement

The type of storage rack (i.e., single-, double- or multiple-row) as well as the type of container will generally be the driving factors for the in-rack sprinkler arrangement. As an example, for a typical double-row rack using solid-walled plastic containers, Data Sheet 8-34 would recommend the installation of three rows of in-rack sprinklers for approximately every 10 feet (3.0 meters) of vertical increment. The three rows of in-rack sprinklers would generally be arranged as follows:

At the face of each rack, in-rack sprinklers would be provided between every two containers (i.e., every other transverse flue space), and

Within the longitudinal flue space (the space separating the backs of each rack), in-rack sprinklers would be provided between every container (i.e., every transverse flue space).

Other Considerations

Containers: Containers and their contents that are arranged to allow water to escape from them, near the bottom of the container’s sides perpendicular to the loading aisle, will allow for greater vertical distances between in-rack sprinklers. This would help decrease the cost of in-rack sprinkler installation and allow for greater storage capacity.

Racking structure: Many ASRS racking structures use angle irons to support container storage within them. Testing has shown that angle irons can divert sprinkler water discharge from the transverse flue spaces where the water is needed. Using ASRS racking structures that do not divert water from the transverse flue spaces can also allow for an increase in the vertical distance between in-rack sprinklers, which would reduce the cost of in-rack sprinklers and increase storage capacity.

Ceiling sprinklers: Even with the modular in-rack sprinkler approach, ceiling sprinklers are still needed. Testing has demonstrated that they can protect up to a maximum of 10 feet (3.0 meters) of storage above the top in-rack sprinkler level.

Horizontal barriers between tiers: Horizontal barriers, which are basically ceilings built within the storage racks constructed of either plywood or sheet metal, were previously recommended to limit fire spread as well as quickly activate in-rack sprinklers. With the new, enhanced fire protection, the costs and headaches associated with these barriers are eliminated as they are no longer required.

System independence: Fortunately, you don’t have to design ceiling and in-rack sprinkler systems to work in tandem. Independent sprinkler systems translate into reduced water flow requirements, which also translates into a reduction in cost for water supplies feeding the sprinkler systems.

Together, these recommendations help warehouse operators optimize their available storage capacity, reduce necessary water flow, and limit projected fire, smoke and water damage.

What This Means to Warehouse Managers

Hopefully, our multimillion dollar investment in research answers some of the vexing questions manufacturers are starting to ask. These questions only loom larger as more companies automate their warehouses, pack them more densely and stack products higher. Careful design and configuration can help ensure that fires are quickly suppressed and companies that do experience a fire stay in business and remain competitive.

Ultimately, the goal is to let robots, which in science fiction always seem to run amok, deliver the quiet efficiency they promise in the real world.

Weston Baker Jr. is staff vice president, senior engineering technical specialist, in the Engineering Standards Group at FM Global, one of the world’s largest commercial property insurers.
Contributor: Andy Aleksich, Senior Designer of F.E. Moran Special Hazard Systems

Writer: Sarah Block, Marketing Director of The Moran Group

On November 22, 2006, a malevolent explosion turned the town of Danvers, MA upside down. The explosion started in a chemical manufacturing plant, destroying it. The subsequent fires had far-reaching effects; it destroyed twenty-four homes, six business, and dozens of boats at a nearby marina. At least ten residents were hospitalized as a direct result of the explosion, and over 300 residents in the nearby neighborhood were evacuated. This disaster spurred the residents of Danvers, MA to establish community groups' Safe Area for Everyone (SAFE) and re-established the Local Emergency Planning Committee (LEPC). The U.S. Chemical Safety and Hazard Investigation Board (CSB) determined that the explosion was fueled by escaped vapor from a 2,000-gallon tank of highly flammable liquid. The ensuing fire blazed for seventeen hours.

It was discovered that although it is required for chemical plants that store flammable liquid to be inspected every year by the local fire department, the Danvers plant had not been inspected for four years. Additionally, the facility was not storing the flammable liquid in compliance with OSHA, Massachusetts fire code, or NFPA requirements. However, because the Massachusetts fire code does not require the application of NFPA 30 retroactively, the plant was not directly non-compliant. The chemical plant had a foam/water fire sprinkler system. This type of system is meant to work in conjunction with a fire alarm box that contacts the fire department. However, the chemical plant did not have a fire alarm box, so the fire department was not notified, allowing the conflagration to continue for seventeen hours. The CSB recommended the city of Danvers adapt the NFPA 30 code. Had they taken the advice, the chemical plant would have been in direct violation. They are not the only ones. Everyday facilities are cited for violating this code. Why are NFPA 30 violations so prevalent?

Insurance Underwriters are Focusing on NFPA 30

Currently, insurance underwriters are paying close attention to NFPA 30, Flammable and Combustible Liquids. In recent years, many plants have received written recommendations by risk management audits to revise the way flammable liquids and chemicals are being stored. Plants have the difficult task of combining the requirements from the NFPA, local authorities, and insurers into one fire protection solution. In some cases, one authority has precedence over another in one aspect of fire protection, but not all. For example, if a fire protection solution has been designed, developed, and tested by an approved testing facility, but does not meet NFPA requirement, if the authority having jurisdiction (AHJ) approves, it becomes compliant with NFPA. The complexity of NFPA 30 often results in unintentional non-compliance.
NFPA 30 is Complex

To give this code perspective, we will compare it to NFPA 13, The Standard for Installation of Sprinkler Systems. NFPA 13 is a code used for every type of Fire Sprinkler System solution. In this code, there are 26 chapters. In NFPA 30, which has a much smaller population of users, there are 29 chapters, 14 annexes, 1 chart, and 1 form.

To determine each fire protection need, according to NFPA 30, facilities must answer a series of questions before coming to a conclusion. For example, to find out how high a facility can store flammable liquids in vertical stacks, facilities must research and answer the following questions:

1. Is it a liquid (fluidity, viscosity, water-miscible)?
2. What type of liquid is it (flammable, combustible, flash points, boiling points, etc)?
3. What is the liquid classification (IA, IB, II, III, IIIA, IIIB)?
4. What type of occupancy is the liquid stored in (healthcare facility, industrial, processing plant, liquid storage warehouse, etc)?
5. What type of container is the liquid stored in (drums, portable tanks, relieving, non-relieving, immediate bulk containers, etc)?
6. Is there an automatic sprinkler system protecting the space (design flow rate, density, foam/water, etc)? What is the container arrangement (palletized, rack, maximum allowable quantity, etc)?

For each different liquid storage fire protection solution - sprinklers, detection, and a wide-array of physical storage requirements - several questions must be researched and answered. This can be extremely burdensome for facility staff with a variety of responsibilities.

Solution

With a combination of fire protection professionals and NFPA 30 provided charts and forms, it is possible to apply this extremely complicated code. If a facility chooses to take on this task independently, it is recommended to utilize figures 16.4.1(a), 16.4.1(b), and 16.4.1(c) (see below) from NFPA 30 to determine the correct section of chapter 16 to apply to the facility's fire protection solution.

Renew your 2017/18 NJ Chapter Membership

All: We have extended the Chapter Membership Renewal deadline. If you have not already done so, please renew your NJSFPE membership at the link below. Dues are now due for the 2017-2018 Chapter year. Thank you for your continued support of the New Jersey Chapter and our ongoing programs.

http://events.constantcontact.com/register/event?llr=gyofsfkab&oeidk=a07eeskh7x5ccej80445

Rich Reitberger
NJSFPE, Membership Chair
Northern California wildfires to be costliest in US history: Fitch

Last month’s California wildfires will be the costliest wildfire loss in U.S. history, U.K.-based Fitch Ratings Ltd. said Thursday, citing insured loss estimates of $8 billion.

While Fitch said it does not expect any of the insurance or reinsurance companies that it rates to be downgraded solely as a result of the wildfire losses, many companies will be also handling other substantial third-quarter 2017 losses.

“Adding the California wildfires to hurricanes Harvey, Irma and Maria,” Fitch said in a statement, “will make 2017 one of the costliest catastrophe loss years in U.S. history, with insured losses reaching $70 billion-$100 billion according to various estimates.”

In some instances, Fitch said, insurers could ultimately report aggregate 2017 catastrophe losses at levels that strain capital and pressure ratings.

The latest insured loss estimate from Aon Benfield is $8 billion, Fitch said, but the overall economic losses are considerably greater.

California’s North Bay wildfires in October spread over 245,000 acres, with Napa, Sonoma, Mendocino, Lake, Solano, Butte and Yuba counties seeing the worst damage. Fitch said that the most up-to-date information reports 43 fatalities and 185 injuries, with nearly 9,300 structures damaged and 8,560 destroyed.

To date, Fitch said, the California Department of Insurance has reported that 19,000 residential, commercial and auto claims have been filed, with payouts exceeding $3.3 billion.

Fitch said the expected loss from the October wildfires will eclipse past California wildfires.

In comparison, Fitch said, the 1991 Oakland Hills wildfire reported a $2.7 billion loss (inflation adjusted through 2016) from 25 deaths and 2,900 structures destroyed.

Last year’s wildfire in Fort McMurray, Alberta, was Canada’s largest wildfire, spreading across 1.15 million acres, destroying about 2,400 homes and buildings and generating $3.7 billion in insured losses.

Commercial insured losses from the third-quarter fires will include property, business interruption and crop business, Fitch said. Business interruption losses will take longer to determine and settle with insurers but are expected to remain a moderate portion of total insured losses. Ten of the 1,200 California wineries were reported destroyed or heavily damaged. According to the Wine Institute, 90% of the year’s grapes had already been harvested at the time of the fires.

Separately, Boston-based catastrophe modeling firm AIR Worldwide updated its loss estimates for the California wildfires to a range of $8 billion to $10.5 billion.

On Oct. 26, AIR released an estimate of $2 billion to $3 billion.

AIR said in a statement Thursday that it released the updated estimates after analyzing findings from its damage survey conducted during the week of Oct. 30, along with new information about policy terms, and a re-examination of the replacement values of high-value homes within its industry exposure database.

AIR said its loss estimates represent damage to residential, mobile home, commercial and automobile lines of business, as well as direct business interruption losses.

The estimates include demand surge, or increases in rebuilding costs that result from shortages of labor and materials, but do not consider extra expenses such as debris removal.

Losses to vineyards and wineries remains uncertain, AIR said. While AIR does not expect losses to wineries and vineyards to constitute the major part of the losses from these fires, the value of the equipment, machinery and inventory at the wineries may exceed the contents values in the firm’s industry exposure database.
Donate today and help a Fire Protection Engineering student reach their goal of becoming an FPE. Your donation is also tax deductible. www.njsfpe.org/scholarship_fund_donations

J. Sargent “Sarge” Slicer, FSFPE
P.O. Box 1647
West Chatham, MA 02669-1647
Office 508-945-5074
Mobile 973-493-0369
VM & Fax 866-395-6172
Member – SFPE & NFPA
sargeslicer@gmail.com

Paul McGrath
President
Firm: APR00072

City Fire Equipment Co., Inc.
www.cityfire.com
733 Ridgevale Ave.
East Hanover, NJ 07936
Phone: (973) 569-1600 ext. 204
Fax: (973) 781-1009 • Cell: (973) 476-6132
paul@cityfire.com

SIEMENS
Siemens Industry, Inc.
Building Technologies Division
18 Baldwin Lane
Levittown, NY 11756

Paul Sanfilippo
Territory Sales Manager
Metro
Control Products & Systems
Mobile: +1 516 840-0461
E-mail: paulsanfilippo@siemens.com
usa.siemens.com/industry

Richard Ravaloli
Manager
TEL 908-272-0565
FAX 908-272-0144
survivorfiresafety.com
richard@survivorfiresafety.com

SFPE
NJ-NY Metro Foundation
Donate today and help a Fire Protection Engineering student reach their goal of becoming an FPE. Your donation is also tax deductible. www.njsfpe.org/scholarship_fund_donations

OLIVER
Fire Protection & Security
565 East Main Street
Chester, NJ 07930
908-532-5111
Call: 862-307-3020
www.oliverfireprotection.com

Fusible Links
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
</table>
| Dec. 4 | **Speaker:** Tristan Mackintosh, CEO
SafeSpill Systems—**Topic:** “Spill Protection Systems for Flammable Liquids” |
| Jan 8 | **Recent Fire Loss Investigations**—**Lessons Learned**—Jerry Naylis, Technical Fire Services |
| Feb 5 | **Protection of Auto Storage & Retrieval Systems**—Joe Janiga, FM |
| March 5 | **Wireless Fire Alarm Systems**—Jason |
| April 19 | **Chapter Technical Seminar**—Details to follow |
| May 7 | **Fire Pump Arc Flash**—Tracey Bellamy, Telgian |
| June 4 | **NJ-NY Metro Education Golf Outing** |
| June 18 | **Dave Barber, Principal Engr, Arup**—**Topic:** “Tall Wood Buildings”. Annual Chapter meeting and election of officers. |
HELPFUL LINKS

ADAAG http://www.access-board.gov/adaag/about/index.htm
AFAA National http://www.afaa.org/
AFSA http://www.firesprinkler.org/
ANSI http://web.ansi.org/
ASHRAE http://www.ashrae.org/
Campus-Firewatch http://www.campus-firewatch.com/
CPSC http://www.cpsc.gov/
CSAA http://www.csaa.org/
Municipal Codes (E Codes) http://www.generalcode.com/Code2.html
FM Global http://www.fmglobal.com/
FSDANY http://www.fsdany.org/regs.htm
FSI http://www.firesprinklerinitiative.org/
FSSA http://www.fssa.net/
Fire Tech Productions—Nicet Training (FTP) http://www.firetech.com/
Home Fire Sprinkler Coalition http://www.homesprinkler.org/
AFAA-NJ http://www.afaanj.org/
The Joint Commission (JCAHO) - http://www.jointcommission.org/ijcaho.org/
National of Fire Equipment Distributors (NAFED) - http://www.nafed.org/index.cfm

2017-2018 Chapter Committees

STANDING COMMITTEES

Program
Mike Newman

Arrangements
Vicki Serafin, Chairperson

Membership
Paul McGrath, Chairman

Nominating
Marvin Maradiaga
Jim Burge

Auditing
Vicki Gallagher, Chairman
Rich Reitberger

Archivist
Jim Tolos, Vicki & Nicole

Speakers
Rich Reitberger

Communications
Fusible Link—Brad Hart
bradhart07438@yahoo.com
Ana Crisostomo—Coordinator
Communications-Other
Paul McGrath
Mike Newman

Mailing/Automation/e-mail—Vicki Serafin, Chairperson
Webmaster—Mike Newman & Paul McGrath

SPECIAL COMMITTEES

Spring Seminar
Ed Arm-—Chairman
Dave Kurasz—Sprinkler Speakers Coordinator
Jim Lotho—Alarm Speakers Coordinator
Paul McGrath—Vendor Coordinator

Bylaws
Jim Tolos, Chairman
Joe Janiga
John Antola

Career Recruitment
Tim Costello, Chairman
Donna Spano
Marios Michaelides

Chapter Excellence Awards
Emilie Vega Janica

PE Examination
Donna Spano

Chapter Seminar/Field Trip
Richard Reitberger, Chairman
Ed Arm- , CoChairman
Dave Gluckman
Nathan Gory

Legislative
Rich Reitberger, Chairman
Jerry Naylis
Dave Kuratk

Finance
Rich Reitberger - Chairman
Vanessa Gallagher
C. Patel

Fusible Link Newsletter Advertisement - 2017-2018

Name: __

Company: ___________________________ Phone Number: ___________________________

Email Address: ___________________________

Membership Renewal Fee (CIRCLE ONE)

 Business Card $ 100
 1/4 Page $ 250
 1/2 Page $ 500
 Full Page $ 1,000

Payment:

 □ To pay by Credit Card click here: Pay On-Line Here
 □ To pay by mail make your check out to: "NJ Chapter SFPE" and send along with this Form to:

 Vicki Lynn Serafin - Membership
 CO 31 Chapter-SFPE
 P.O. Box 9298
 Parsippany, NJ 07054-1296

*Please send your Scanned Business Card or Artwork to the following e-mail addresses:

 Vicki.Serafin@affiliatedfm.com & richard528@gmail.com

Any questions call Vicki at 973-341-8771

Thank you for your continued support!